The turbidite-contourite-tidalite-baroclinite-hybridite problem: orthodoxy vs. empirical evidence behind the “Bouma Sequence”

Author:

Shanmugam G.

Abstract

AbstractThe underpinning problems of deep-water facies still remain unresolved. (1) The Tb, Tc, and Td divisions of the turbidite facies model, with traction structures, are an integral part of the “Bouma Sequence” (Ta, Tb, Tc, Td, Te). However, deposits of thermohaline contour currents, wind-driven bottom currents, deep-marine tidal currents, and baroclinic currents (internal waves and tides) also develop discrete rippled units, mimicking Tc. (2) The application of “cut-out” logic of sequences, which was originally introduced for the “Bouma Sequence”, with sharp basal contacts and sandy divisions containing well-developed traction structures, to muddy contourites with gradational basal contacts and an absence of well-developed traction structures is incongruent. (3) The presence of five internal divisions and hiatus in the muddy contourite facies model is in dispute. (4) Intersection of along slope contour currents with down slope sediment-gravity flows, triggering hybrid flows, also develops traction structures. (5) The comparison of genuine hybrid flows with down slope flow transformation of gravity flows is inconsistent with etymology of the term “hybrid”. (6) A reexamination of the Annot Sandstone at the Peira Cava type locality in SE France fails to validate either the orthodoxy of five internal divisions of the “Bouma Sequence” or their origin by turbidity currents. For example, the “Ta” division is composed of amalgamated units with inverse grading and floating mudstone clasts, suggesting a mass-transport deposit (MTD). The “Tb” and “Tc” divisions are composed of double mud layers and sigmoidal cross bedding, respectively, which suggest a tidalite origin. (7) Although it was reasonable to introduce a simplistic “Bouma Sequence” in 1962, at a time of limited knowledge on deep-water processes, it is obsolete now in 2021 to apply this model to the rock record amid a wealth of new knowledge. (8) The disconnect between 12 observed, but questionable, modern turbidity currents and over 10,000 interpreted ancient turbidites defies the doctrine of uniformitarianism. This disconnect is attributed to routine application of genetic facies models, without a pragmatic interpretation of empirical data. (9) A suggested solution to these problems is to interpret traction structures in the sedimentary record pragmatically on the basis of empirical field and experimental evidence, without any built-in bias using facies models, such as the “Bouma Sequence”. (10) Until reliable criteria are developed to distinguish traction structures of each type of bottom currents based on uniformitarianism, a general term “BCRS” (i.e., bottom-current reworked sands) is appropriate for deposits of all four kinds of bottom currents.

Publisher

Springer Science and Business Media LLC

Reference158 articles.

1. Allen, J.R.L. 1965. Late Quaternary Niger Delta, and adjacent areas: sedimentary environments and lithofacies. AAPG Bulletin 49: 547–600.

2. Allen, J.R.L. 1985. Loose-boundary hydraulics and fluid mechanics: selected advances since 1961. In Sedimentology: recent developments and applied aspects, ed. P.J. Brenchley and P.J. Williams, 7–28. Oxford: Published for the Geological Society by Blackwell Scientific Publications.

3. Apel, J.R. 2002. Oceanic internal waves and solitons. In An atlas of oceanic internal solitary-like waves and their properties (May 2002), by Global Ocean Associates, prepared for Office of Naval Research – Code 322PO, ed. C.R. Jackson and J.R. Apel, 1–40 http://www.internalwaveatlas.com/Atlas_PDF/IWAtlas_Pg001_Introduction.pdf. (Accessed 14 May 2012).

4. Apel, J.R., L.A. Ostrovsky, Y.A. Stepanyants, and J.F. Lynch. 2006. Internal solitons in the ocean. Woods Hole Oceanographic Institution Technical Report WHOI-2006-04, 109. Woods Hole: Woods Hole Oceanographic Institution.

5. Arnott, R.W.C., and B.M. Hand. 1989. Bedforms, primary structures and grain fabric in the presence of suspended sediment rain. Journal of Sedimentary Petrology 59: 1062–1069.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3