New concept for quantification of similarity relates entropy and energy of objects: First and Second Law entangled, group behavior of micro black holes expected

Author:

Zimak Petr,Terenzi Silvia,Strazewski Peter

Abstract

Abstract When the free energy of similar but distinct molecule-sized objects is plotted against the temperature at which their energy and entropy contributions cancel, a highly significant linear dependence results from which the degree of similarity between the distinctly different members within the group of objects can be quantified and a relationship between energy and entropy is derived. This energy-entropy relationship entirely reflects the mathematical structure of thermodynamic equations, is in this sense fundamental and therefore does probably not dependent on material nor scale. The energy-entropy relationship is likely to be of general interest in molecular biology, population biology, synthetic biology, biophysics, chemical thermodynamics, systems chemistry and physics, most notably in particle physics and cosmology. In physics we predict a consistent and perhaps testable way of classifying micro black holes, to be generated in future Large Hadron Collider experiments, by their gravitational energy and area entropy.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3