Author:
Wu Qikai,Cai Lingkai,Yuan Baorui,Cao Qiang,Zhuang Juntao,Bao Meiling,Wang Zhen,Feng Dexiang,Tao Jun,Li Pengchao,Shao Qiang,Yang Xiao,Lu Qiang
Abstract
Abstract
Purpose
To develop and validate a preoperative cystoscopic-based predictive model for predicting postoperative high-grade bladder cancer (BCa), which could be used to guide the surgical selection and postoperative treatment strategies.
Materials and methods
We retrospectively recruited 366 patients with cystoscopy biopsy for pathology and morphology evaluation between October 2010 and January 2021. A binary logistic regression model was used to assess the risk factors for postoperative high-grade BCa. Diagnostic performance was analyzed by plotting receiver operating characteristic curve and calculating area under the curve (AUC), sensitivity, specificity. From January 2021 to July 2021, we collected 105 BCa prospectively to validate the model's accuracy.
Results
A total of 366 individuals who underwent transurethral resection of bladder tumor (TURBT) or radical cystectomy following cystoscopy biopsy were included for analysis. 261 (71.3%) had a biopsy pathology grade that was consistent with postoperative pathology grade. We discovered five cystoscopic parameters, including tumor diameter, site, non-pedicled, high-grade biopsy pathology, morphology, were associated with high-grade BCa. The established multi-parameter logistic regression model (“JSPH” model) revealed AUC was 0.917 (P < 0.001). Sensitivity and specificity were 86.2% and 84.0%, respectively. And the consistency of pre- and post-operative high-grade pathology was improved from biopsy-based 70.5% to JSPH model-based 85.2%. In a 105-patients prospective validation cohort, the consistency of pre- and post-operative high-grade pathology was increased from 63.1 to 84.2% after incorporation into JSPH model for prediction.
Conclusion
The cystoscopic parameters based “JSPH model” is accurate at predicting postoperative pathological high-grade tumors prior to operations.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Urology,Reproductive Medicine,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献