MicroRNA-219c-5p regulates bladder fibrosis by targeting FN1

Author:

Liu Bowen,Ding Yafei,Li Peng,Wang Tao,He Siyuan,Jia Zhankui,Yang JinjianORCID

Abstract

Abstract Background We found that the bladders of multiple sclerosis mice were significantly fibrotic. This study aimed to investigate the relationship between fibronectin 1 (FN1) and bladder fibrosis, as well as the microRNAs involved in FN1 regulation. Methods The degree of bladder smooth muscle fibrosis was observed by immunohistochemistry. In addition, we used quantitative real-time polymerase chain reaction (RT-qPCR) and Western blotting to determine FN1 expression in bladders with different grades of fibrosis. Bioinformatics analysis revealed that miR-199a-3p, miR-219c-5p and miR-3572-3p could inhibit FN1 synthesis. Therefore, miR-199a-3p, miR-219c-5p and miR-3572-3p were overexpressed or knocked down in bladder smooth muscle cells (BSMCs), and the respective transfection and FN1 knockdown efficiencies were detected by RT-qPCR. Only miR-219c-5p overexpression and knockdown produced the expected results. A dual luciferase reporter assay was used to determine the targeting relationship between miR-219c-5p and FN1. Flow cytometry and Cell Counting Kit 8 (CCK8) experiments confirmed that miR-219c-5p reduced FN1 expression and affected the biological activity of smooth muscle cells. Agomir and anagomir of miR-219c-5p were transfected in vivo to observe the change of bladder fibrosis in mice. Results With increasing bladder fibrosis, FN1 expression increased, while miR-199a-3p, miR-219c-5p, and miR-3572-3p expression levels decreased. The RT-qPCR results after transfection showed that only miR-219c-5p could regulate FN1. Indeed, the dual luciferase reporter assay results indicated that miR-219c-5p targeted FN1 directly. CCK8 and cell cycle assays showed that miR-219c-5p overexpression inhibited BSMC proliferation, while miR-219c-5p knockdown promoted BSMC proliferation. An apoptosis assay showed that miR-219c-5p overexpression promoted apoptosis, while miR-219c-5p knockdown inhibited BSMC apoptosis. The agomir and anagomir transfected with miR-219c-5p in vivo found that the bladder fibrosis of the mice in the agomir group was reduced, and the anagomir group was worse. Conclusions Our findings indicate that FN1 up-regulation and miR-219c-5p down-regulation play an important role in the development of bladder fibrosis, and miR-219c-5p participates in bladder fibrosis by regulating FN1 expression. Thus, a novel antifibrotic function of miR-219c-5p is proposed, which may represent a potential target for the diagnosis and treatment of bladder fibrosis.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Urology,Reproductive Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3