Electrical conductivity-based contrast imaging for characterizing prostatic tissues: in vivo animal feasibility study

Author:

Cho Yong Soo,Hur Young Hoe,Seon Hyun Ju,Kim Jin Woong,Kim Hyung JoongORCID

Abstract

Abstract Background Electrical conductivity-based magnetic resonance (MR) imaging may provide unique information on tissue condition because its contrast originates from the concentration and mobility of ions in the cellular space. We imaged the conductivity of normal canine prostate in vivo and evaluated tissue contrast in terms of both the conductivity distribution and anatomical significance. Methods Five healthy laboratory beagles were used. After clipping the pelvis hair, we attached electrodes and placed each dog inside the bore of an MRI scanner. During MR scanning, we injected imaging currents into two mutually orthogonal directions between two pairs of electrodes. A multi spin echo pulse sequence was used to obtain the MR magnitude and magnetic flux density images. The projected current density algorithm was used to reconstruct the conductivity image. Results Conductivity images showed unique contrast depending on the prostatic tissues. From the conductivity distribution, conductivity was highest in the center area and lower in the order of the middle and outer areas of prostatic tissues. The middle and outer areas were, respectively, 11.2 and 25.5% lower than the center area. Considering anatomical significance, conductivity was highest in the central zone and lower in the order of the transitional and peripheral zones in all prostates. The transitional and peripheral zones were, respectively, 7.5 and 17.8% lower than the central zone. Conclusions Current conductivity-based MR imaging can differentiate prostatic tissues without using any contrast media or additional MR scans. The electrical conductivity images with unique contrast to tissue condition can provide a prior information on tissues in situ to be used for human imaging.

Funder

National Research Foundation of Korea

Ministry of Health and Welfare

Research fund from Chosun University

Publisher

Springer Science and Business Media LLC

Subject

Urology,Reproductive Medicine,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3