Author:
Qiu Jiechuan,Wang Zicheng,Xu Yingkun,Zhao Leizuo,Zhang Peizhi,Gao Han,Wang Qingliang,Xia Qinghua
Abstract
Abstract
Objective
Clear cell renal cell carcinoma (ccRCC) is a malignant renal tumor that is highly prone to metastasis and recurrence. The exact pathogenesis of this cancer is still not well understood. This study aimed to identify novel hub genes in renal clear cell carcinoma and determine their diagnostic and prognostic value.
Methods
Intersection genes were obtained from multiple databases, and protein–protein interaction analysis and functional enrichment analysis were performed to identify key pathways related to the intersection genes. Hub genes were identified using the cytoHubba plugin in Cytoscape. GEPIA and UALCAN were utilized to observe differences in mRNA and protein expression of hub genes between KIRC and adjacent normal tissues. The Wilcoxon rank sum test was used to analyze hub gene levels between paired KIRC and matched non-cancer samples. IHC results were obtained from the HPA online database, and according to the median gene expression level, they were divided into a high-expression group and a low-expression group. The correlation of these groups with the prognosis of KIRC patients was analyzed. Logistic regression and the Wilcoxon rank sum test were used to test the relationship between SLC34A1 level and clinicopathological features. The diagnostic value of SLC34A1 was evaluated by drawing the receiver operating characteristic (ROC) curve and calculating the area under the curve (AUC). Cox regression analysis was used to analyze the relationship between clinicopathological features, SLC34A1 expression, and KIRC survival rate. LinkedOmics was used to obtain the genes most related to SLC34A1 and their functional enrichment. Genetic mutations and methylation levels of SLC34A1 in KIRC were obtained from the cBioPortal website and the MethSurv website, respectively.
Results
Fifty-eight ccRCC differential genes were identified from six datasets, and they were mainly enriched in 10 functional items and 4 pathways. A total of 5 hub genes were identified. According to the GEPIA database analysis, low expression of SLC34A1, CASR, and ALDOB in tumors led to poor prognosis. Low expression of SLC34A1 mRNA was found to be related to clinicopathological features of patients. SLC34A1 expression in normal tissues could accurately identify tumors (AUC 0.776). SLC34A1 was also found to be an independent predictor of ccRCC in univariate and multivariate Cox analyses. The mutation rate of the SLC34A1 gene was 13%. Eight of the 10 DNA methylated CpG sites were associated with the prognosis of ccRCC. SLC34A1 expression in ccRCC was positively correlated with B cells, eosinophils, neutrophils, T cells, TFH, and Th17 cells, and negatively correlated with Tem, Tgd, and Th2 cells.
Conclusion
The expression level of SLC34A1 in KIRC samples was found to be decreased, which predicted a decreased survival rate of KIRC. SLC34A1 may serve as a molecular prognostic marker and therapeutic target for KIRC patients.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Publisher
Springer Science and Business Media LLC
Subject
Urology,Reproductive Medicine,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献