Evaluating noninvasive brain stimulation to treat overactive bladder in individuals with multiple sclerosis: a randomized controlled trial protocol

Author:

Salazar Betsy H.,Hoffman Kristopher A.,Lincoln John A.,Karmonik Christof,Rajab Hamida,Helekar Santosh A.,Khavari Rose

Abstract

Abstract Background Multiple Sclerosis (MS) is an often debilitating disease affecting the myelin sheath that encompasses neurons. It can be accompanied by a myriad of pathologies and adverse effects such as neurogenic lower urinary tract dysfunction (NLUTD). Current treatment modalities for resolving NLUTD focus mainly on alleviating symptoms while the source of the discomfort emanates from a disruption in brain to bladder neural circuitry. Here, we leverage functional magnetic resonance imaging (fMRI), repetitive transcranial magnetic stimulation (rTMS) protocols and the brains innate neural plasticity to aid in resolving overactive bladder (OAB) symptoms associated with NLUTD. Methods By employing an advanced neuro-navigation technique along with processed fMRI and diffusion tensor imaging data to help locate specific targets in each participant brain, we are able to deliver tailored neuromodulation protocols and affect either an excitatory (20 min @ 10 Hz, applied to the lateral and medial pre-frontal cortex) or inhibitory (20 min @ 1 Hz, applied to the pelvic supplemental motor area) signal on neural circuitry fundamental to the micturition cycle in humans to restore or reroute autonomic and sensorimotor activity between the brain and bladder. Through a regimen of questionnaires, bladder diaries, stimulation sessions and analysis, we aim to gauge rTMS effectiveness in women with clinically stable MS. Discussion Some limitations do exist with this study. In targeting the MS population, the stochastic nature of MS in general highlights difficulties in recruiting enough participants with similar symptomology to make meaningful comparisons. As well, for this neuromodulatory approach to achieve some rate of success, there must be enough intact white matter in specific brain regions to receive effective stimulation. While we understand that our results will represent only a subset of the MS community, we are confident that we will accomplish our goal of increasing the quality of life for those burdened with MS and NLUTD. Trial registration This trial is registered at ClinicalTrials.gov (NCT06072703), posted on Oct 10, 2023.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3