Exploring heterogeneous expression of beta-actin (ACTB) in bladder cancer by producing a monoclonal antibody 6D6

Author:

Zareinejad MohammadrasulORCID,Faghih ZahraORCID,Ramezani AminORCID,Safaei AkbarORCID,Ghaderi AbbasORCID

Abstract

Abstract Background To predict outcomes and identify potential therapeutic targets for cancers, it is critical to find novel specific biomarkers. The objective of this study was to search for and explore novel bladder cancer-associated protein biomarkers. Methods A library of monoclonal antibodies (mAbs) against the JAM-ICR cell line was first generated, and clones with high affinity were selected. Hybridomas were screened using bladder cancer (BLCA) cell lines and normal cells. The target of the selected mAb was then characterized through immunoaffinity purification, western blotting, and mass spectrometry analysis. Expression of the target antigen was assessed by flow cytometry and IHC methods. Several databases were also used to evaluate the target antigen in BLCA and other types of cancers. Results Based on screenings, a 6D6 clone was selected that recognized an isoform of beta-actin (ACTB). Our data showed that ACTB expression on different cell lines was heterogeneous and varied significantly from low to high intensity. 6D6 bound strongly to epithelial cells while showing weak to no reactivity to stromal, endothelial, and smooth muscle cells. There was no association between ACTB intensity and related prognostic factors in BLCA. In silico evaluations revealed a significant correlation between ACTB and overexpressed genes and biomarkers in BLCA. Additionally, the differential expression of ACTB in tumor and healthy tissue as well as its correlation with survival time in a number of cancers were shown. Conclusions The heterogeneous expression of ACTB may suggest the potential value of this marker in the diagnosis or prognosis of cancer.

Funder

Shiraz University of Medical Sciences

Shiraz Institute for Cancer Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3