Author:
Ma Guang,You Shuhui,Xie Yizhao,Gu Bingxin,Liu Cheng,Hu Xichun,Song Shaoli,wang Biyun,Yang Zhongyi
Abstract
Abstract
Objective
Intra-tumoral heterogeneity of 18F‐fluorodeoxyglucose (18F‐FDG) uptake has been proven to be a surrogate marker for predicting treatment outcome in various tumors. However, the value of intra-tumoral heterogeneity in metastatic Human epidermal growth factor receptor 2(HER2) positive breast cancer (MHBC) remains unknown. The aim of this study was to evaluate 18F‐FDG uptake heterogeneity to predict the treatment outcome of the dual target therapy with Trastuzumab and Pertuzumab(TP) in MHBC.
Methods
Thirty-two patients with MHBC who underwent 18F-FDG positron emission tomography/computed tomography (PET/CT) scan before TP were enrolled retrospectively. The region of interesting (ROI) of the lesions were drawn, and maximum standard uptake value (SUVmax), mean standard uptake value (SUVmean), total lesion glycolysis (TLG), metabolic tumor volume (MTV) and heterogeneity index (HI) were recorded. Correlation between PET/CT parameters and the treatment outcome was analyzed by Spearman Rank Test. The ability to predict prognosis were determined by time‐dependent survival receiver operating characteristic (ROC) analysis. And the survival analyses were then estimated by Kaplan‐Meier method and compared by log‐rank test.
Results
The survival analysis showed that HI50% calculated by delineating the lesion with 50%SUVmax as threshold was a significant predictor of patients with MHBC treated by the treatment with TP. Patients with HI50% (≥ 1.571) had a significantly worse prognosis of progression free survival (PFS) (6.87 vs. Not Reach, p = 0.001). The area under curve (AUC), the sensitivity and the specificity were 0.88, 100% and 63.6% for PFS, respectively.
Conclusion
18F-FDG uptake heterogeneity may be useful for predicting the prognosis of MHBC patients treated by TP.
Funder
Shanghai Committee of Science and Technology Fund
Shanghai Municipal Health Commission
National Natural Science Foundation of China
Shanghai Sailing Program
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology