Author:
Song Feipeng,Yang Qian,Gong Tong,Sun Kai,Zhang Wenjia,Liu Mengxi,Lv Fajin
Abstract
Abstract
Background
To compare the diagnostic performance of Lung-RADS (lung imaging-reporting and data system) 2022 and PNI-GARS (pulmonary node imaging-grading and reporting system).
Methods
Pulmonary nodules (PNs) were selected at four centers, namely, CQ Center (January 1, 2018-December 31, 2021), HB Center (January 1, 2021–June 30, 2022), SC Center (September 1, 2021–December 31, 2021), and SX Center (January 1, 2021–December 31, 2021). PNs were divided into solid nodules (SNs), partial solid nodules (PSNs) and ground-glass nodules (GGNs), and they were then classified by the Lung-RADS and PNI-GARS. The sensitivity, specificity and agreement rate were compared between the two systems by the χ2 test.
Results
For SN and PSN, the sensitivity of PNI-GARS and Lung-RADS was close (SN 99.8% vs. 99.4%, P < 0.001; PSN 99.9% vs. 98.4%, P = 0.015), but the specificity (SN 51.2% > 35.1%, PSN 13.3% > 5.7%, all P < 0.001) and agreement rate (SN 81.1% > 74.5%, P < 0.001, PSN 94.6% > 92.7%, all P < 0.05) of PNI-GARS were superior to those of Lung-RADS. For GGN, the sensitivity (96.5%) and agreement rate (88.6%) of PNI-GARS were better than those of Lung-RADS (0, 18.5%, P < 0.001). For the whole sample, the sensitivity (98.5%) and agreement rate (87.0%) of PNI-GARS were better than Lung-RADS (57.5%, 56.5%, all P < 0.001), whereas the specificity was slightly lower (49.8% < 53.4%, P = 0.003).
Conclusion
PNI-GARS was superior to Lung-RADS in diagnostic performance, especially for GGN.
Funder
Science-Health Joint Medical Scientific Research Project of Chongqing
Publisher
Springer Science and Business Media LLC