Optimization and validation of echo times of point-resolved spectroscopy for cystathionine detection in gliomas

Author:

Zhou Min,Nie Zhuang,Zhao Jie,Xiao Yao,Hong Xiaohua,Wang Yuhui,Dong Chengjun,Lin Alexander P.,Lei Ziqiao

Abstract

Abstract Background Cystathionine accumulates selectively in 1p/19q-codeleted gliomas, and can serve as a possible noninvasive biomarker. This study aims to optimize the echo time (TE) of point-resolved spectroscopy (PRESS) for cystathionine detection in gliomas, and evaluate the diagnostic accuracy of PRESS for 1p/19q-codeletion identification. Methods The TE of PRESS was optimized with numerical and phantom analysis to better resolve cystathionine from the overlapping aspartate multiplets. The optimized and 97 ms TE PRESS were then applied to 84 prospectively enrolled patients suspected of glioma or glioma recurrence to examine the influence of aspartate on cystathionine quantification by fitting the spectra with and without aspartate. The diagnostic performance of PRESS for 1p/19q-codeleted gliomas were assessed. Results The TE of PRESS was optimized as (TE1, TE2) = (17 ms, 28 ms). The spectral pattern of cystathionine and aspartate were consistent between calculation and phantom. The mean concentrations of cystathionine in vivo fitting without aspartate were significantly higher than those fitting with full basis-set for 97 ms TE PRESS (1.97 ± 2.01 mM vs. 1.55 ± 1.95 mM, p < 0.01), but not significantly different for 45 ms method (0.801 ± 1.217 mM and 0.796 ± 1.217 mM, p = 0.494). The cystathionine concentrations of 45 ms approach was better correlated with those of edited MRS than 97 ms counterparts (r = 0.68 vs. 0.49, both p < 0.01). The sensitivity and specificity for discriminating 1p/19q-codeleted gliomas were 66.7% and 73.7% for 45 ms method, and 44.4% and 52.5% for 97 ms method, respectively. Conclusion The 45 ms TE PRESS yields more precise cystathionine estimates than the 97 ms method, and is anticipated to facilitate noninvasive diagnosis of 1p/19q-codeleted gliomas, and treatment response monitoring in those patients. Medium diagnostic performance of PRESS for 1p/19q-codeleted gliomas were observed, and warrants further investigations.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Beijing Medical Award Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3