Author:
Zhou Min,Nie Zhuang,Zhao Jie,Xiao Yao,Hong Xiaohua,Wang Yuhui,Dong Chengjun,Lin Alexander P.,Lei Ziqiao
Abstract
Abstract
Background
Cystathionine accumulates selectively in 1p/19q-codeleted gliomas, and can serve as a possible noninvasive biomarker. This study aims to optimize the echo time (TE) of point-resolved spectroscopy (PRESS) for cystathionine detection in gliomas, and evaluate the diagnostic accuracy of PRESS for 1p/19q-codeletion identification.
Methods
The TE of PRESS was optimized with numerical and phantom analysis to better resolve cystathionine from the overlapping aspartate multiplets. The optimized and 97 ms TE PRESS were then applied to 84 prospectively enrolled patients suspected of glioma or glioma recurrence to examine the influence of aspartate on cystathionine quantification by fitting the spectra with and without aspartate. The diagnostic performance of PRESS for 1p/19q-codeleted gliomas were assessed.
Results
The TE of PRESS was optimized as (TE1, TE2) = (17 ms, 28 ms). The spectral pattern of cystathionine and aspartate were consistent between calculation and phantom. The mean concentrations of cystathionine in vivo fitting without aspartate were significantly higher than those fitting with full basis-set for 97 ms TE PRESS (1.97 ± 2.01 mM vs. 1.55 ± 1.95 mM, p < 0.01), but not significantly different for 45 ms method (0.801 ± 1.217 mM and 0.796 ± 1.217 mM, p = 0.494). The cystathionine concentrations of 45 ms approach was better correlated with those of edited MRS than 97 ms counterparts (r = 0.68 vs. 0.49, both p < 0.01). The sensitivity and specificity for discriminating 1p/19q-codeleted gliomas were 66.7% and 73.7% for 45 ms method, and 44.4% and 52.5% for 97 ms method, respectively.
Conclusion
The 45 ms TE PRESS yields more precise cystathionine estimates than the 97 ms method, and is anticipated to facilitate noninvasive diagnosis of 1p/19q-codeleted gliomas, and treatment response monitoring in those patients. Medium diagnostic performance of PRESS for 1p/19q-codeleted gliomas were observed, and warrants further investigations.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hubei Province
Beijing Medical Award Foundation
Publisher
Springer Science and Business Media LLC