Development of a modified 3D region proposal network for lung nodule detection in computed tomography scans: a secondary analysis of lung nodule datasets

Author:

Lin Chia-Ying,Guo Shu-Mei,Lien Jenn-Jier James,Tsai Tzung-Yi,Liu Yi-Sheng,Lai Chao-Han,Hsu I-Lin,Chang Chao-Chun,Tseng Yau-Lin

Abstract

Abstract Background Low-dose computed tomography (LDCT) has been shown useful in early lung cancer detection. This study aimed to develop a novel deep learning model for detecting pulmonary nodules on chest LDCT images. Methods In this secondary analysis, three lung nodule datasets, including Lung Nodule Analysis 2016 (LUNA16), Lung Nodule Received Operation (LNOP), and Lung Nodule in Health Examination (LNHE), were used to train and test deep learning models. The 3D region proposal network (RPN) was modified via a series of pruning experiments for better predictive performance. The performance of each modified deep leaning model was evaluated based on sensitivity and competition performance metric (CPM). Furthermore, the performance of the modified 3D RPN trained on three datasets was evaluated by 10-fold cross validation. Temporal validation was conducted to assess the reliability of the modified 3D RPN for detecting lung nodules. Results The results of pruning experiments indicated that the modified 3D RPN composed of the Cross Stage Partial Network (CSPNet) approach to Residual Network (ResNet) Xt (CSP-ResNeXt) module, feature pyramid network (FPN), nearest anchor method, and post-processing masking, had the optimal predictive performance with a CPM of 92.2%. The modified 3D RPN trained on the LUNA16 dataset had the highest CPM (90.1%), followed by the LNOP dataset (CPM: 74.1%) and the LNHE dataset (CPM: 70.2%). When the modified 3D RPN trained and tested on the same datasets, the sensitivities were 94.6%, 84.8%, and 79.7% for LUNA16, LNOP, and LNHE, respectively. The temporal validation analysis revealed that the modified 3D RPN tested on LNOP test set achieved a CPM of 71.6% and a sensitivity of 85.7%, and the modified 3D RPN tested on LNHE test set had a CPM of 71.7% and a sensitivity of 83.5%. Conclusion A modified 3D RPN for detecting lung nodules on LDCT scans was designed and validated, which may serve as a computer-aided diagnosis system to facilitate lung nodule detection and lung cancer diagnosis.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3