Applying arterial enhancement fraction (AEF) texture features to predict the tumor response in hepatocellular carcinoma (HCC) treated with Transarterial chemoembolization (TACE)

Author:

Mao Xiaonan,Guo Yan,Wen Feng,Liang Hongyuan,Sun Wei,Lu Zaiming

Abstract

Abstract Background To evaluate the application of Arterial Enhancement Fraction (AEF) texture features in predicting the tumor response in Hepatocellular Carcinoma (HCC) treated with Transarterial Chemoembolization (TACE) by means of texture analysis. Methods HCC patients treated with TACE in Shengjing Hospital of China Medical University from June 2018 to December 2019 were retrospectively enrolled in this study. Pre-TACE Contrast Enhanced Computed Tomography (CECT) and imaging follow-up within 6 months were both acquired. The tumor responses were categorized according to the modified RECIST (mRECIST) criteria. Based on the CECT images, Region of Interest (ROI) of HCC lesion was drawn, the AEF calculation and texture analysis upon AEF values in the ROI were performed using CT-Kinetics (C.K., GE Healthcare, China). A total of 32 AEF texture features were extracted and compared between different tumor response groups. Multi-variate logistic regression was performed using certain AEF features to build the differential models to predict the tumor response. The Receiver Operator Characteristic (ROC) analysis was implemented to assess the discriminative performance of these models. Results Forty-five patients were finally enrolled in the study. Eight AEF texture features showed significant distinction between Improved and Un-improved patients (p < 0.05). In multi-variate logistic regression, 9 AEF texture features were applied into modeling to predict “Improved” outcome, and 4 AEF texture features were applied into modeling to predict “Un-worsened” outcome. The Area Under Curve (AUC), diagnostic accuracy, sensitivity, and specificity of the two models were 0.941, 0.911, 1.000, 0.826, and 0.824, 0.711, 0.581, 1.000, respectively. Conclusions Certain AEF heterogeneous features of HCC could possibly be utilized to predict the tumor response to TACE treatment.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3