A transformer-based multi-task deep learning model for simultaneous infiltrated brain area identification and segmentation of gliomas

Author:

Li Yin,Zheng Kaiyi,Li Shuang,Yi Yongju,Li Min,Ren Yufan,Guo Congyue,Zhong Liming,Yang Wei,Li Xinming,Yao Lin

Abstract

Abstract Background The anatomical infiltrated brain area and the boundaries of gliomas have a significant impact on clinical decision making and available treatment options. Identifying glioma-infiltrated brain areas and delineating the tumor manually is a laborious and time-intensive process. Previous deep learning-based studies have mainly been focused on automatic tumor segmentation or predicting genetic/histological features. However, few studies have specifically addressed the identification of infiltrated brain areas. To bridge this gap, we aim to develop a model that can simultaneously identify infiltrated brain areas and perform accurate segmentation of gliomas. Methods We have developed a transformer-based multi-task deep learning model that can perform two tasks simultaneously: identifying infiltrated brain areas segmentation of gliomas. The multi-task model leverages shaped location and boundary information to enhance the performance of both tasks. Our retrospective study involved 354 glioma patients (grades II-IV) with single or multiple brain area infiltrations, which were divided into training (N = 270), validation (N = 30), and independent test (N = 54) sets. We evaluated the predictive performance using the area under the receiver operating characteristic curve (AUC) and Dice scores. Results Our multi-task model achieved impressive results in the independent test set, with an AUC of 94.95% (95% CI, 91.78–97.58), a sensitivity of 87.67%, a specificity of 87.31%, and accuracy of 87.41%. Specifically, for grade II-IV glioma, the model achieved AUCs of 95.25% (95% CI, 91.09–98.23, 84.38% sensitivity, 89.04% specificity, 87.62% accuracy), 98.26% (95% CI, 95.22–100, 93.75% sensitivity, 98.15% specificity, 97.14% accuracy), and 93.83% (95%CI, 86.57–99.12, 92.00% sensitivity, 85.71% specificity, 87.37% accuracy) respectively for the identification of infiltrated brain areas. Moreover, our model achieved a mean Dice score of 87.60% for the whole tumor segmentation. Conclusions Experimental results show that our multi-task model achieved superior performance and outperformed the state-of-the-art methods. The impressive performance demonstrates the potential of our work as an innovative solution for identifying tumor-infiltrated brain areas and suggests that it can be a practical tool for supporting clinical decision making.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3