Abstract
AbstractBackgroundTo determine the predictive CT imaging features for diagnosis in patients with primary pulmonary mucoepidermoid carcinomas (PMECs).Materials and methodsCT imaging features of 37 patients with primary PMECs, 76 with squamous cell carcinomas (SCCs) and 78 with adenocarcinomas were retrospectively reviewed. The difference of CT features among the PMECs, SCCs and adenocarcinomas was analyzed using univariate analysis, followed by multinomial logistic regression and receiver operating characteristic (ROC) curve analysis.ResultsCT imaging features including tumor size, location, margin, shape, necrosis and degree of enhancement were significant different among the PMECs, SCCs and adenocarcinomas, as determined by univariate analysis (P < 0.05). Only lesion location, shape, margin and degree of enhancement remained independent factors in multinomial logistic regression analysis. ROC curve analysis showed that the area under curve of the obtained multinomial logistic regression model was 0.805 (95%CI: 0.704–0.906).ConclusionThe prediction model derived from location, margin, shape and degree of enhancement can be used for preoperative diagnosis of PMECs.
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献