A prediction model of nodal metastasis in cN0 oral squamous cell carcinoma using metabolic and pathological variables

Author:

Xu Feng,Peng Liling,Feng Junyi,Zhu Xiaochun,Pan Yifan,Hu Yuhua,Gao Xin,Ma Yubo,He Yue

Abstract

Abstract Background The efficacy of 18F-fluorodeoxyglucose (18F-FDG) Positron Emission Tomography/Computed Tomography(PET/CT) in evaluating the neck status in clinically node-negative (cN0) oral squamous cell carcinoma(OSCC) patients was still unsatisfying. We tried to develop a prediction model for nodal metastasis in cN0 OSCC patients by using metabolic and pathological variables. Methods Consecutive cN0 OSCC patients with preoperative 18F-FDG PET/CT, subsequent surgical resection of primary tumor and neck dissection were included. Ninety-five patients who underwent PET/CT scanning in Shanghai ninth people’s hospital were identified as training cohort, and another 46 patients who imaged in Shanghai Universal Medical Imaging Diagnostic Center were selected as validation cohort. Nodal-status-related variables in the training cohort were selected by multivariable regression after using the least absolute shrinkage and selection operator (LASSO). A nomogram was constructed with significant variables for the risk prediction of nodal metastasis. Finally, nomogram performance was determined by its discrimination, calibration, and clinical usefulness. Results Nodal maximum standardized uptake value(nodal SUVmax) and pathological T stage were selected as significant variables. A prediction model incorporating the two variables was used to plot a nomogram. The area under the curve was 0.871(Standard Error [SE], 0.035; 95% Confidence Interval [CI], 0.787–0.931) in the training cohort, and 0.809(SE, 0.069; 95% CI, 0.666–0.910) in the validation cohort, with good calibration demonstrated. Conclusions A prediction model incorporates metabolic and pathological variables has good performance for predicting nodal metastasis in cN0 OSCC patients. However, further studies with large populations are needed to verify our findings.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3