MRI-based radiomics value for predicting the survival of patients with locally advanced cervical squamous cell cancer treated with concurrent chemoradiotherapy

Author:

Zhang Xiaomiao,Zhao Jingwei,Zhang Qi,Wang Sicong,Zhang Jieying,An Jusheng,Xie Lizhi,Yu Xiaoduo,Zhao XinmingORCID

Abstract

Abstract Background To investigate the magnetic resonance imaging (MRI)-based radiomics value in predicting the survival of patients with locally advanced cervical squamous cell cancer (LACSC) treated with concurrent chemoradiotherapy (CCRT). Methods A total of 185 patients (training group: n = 128; testing group: n = 57) with LACSC treated with CCRT between January 2014 and December 2018 were retrospectively enrolled in this study. A total of 400 radiomics features were extracted from T2-weighted imaging, apparent diffusion coefficient map, arterial- and delayed-phase contrast-enhanced MRI. Univariate Cox regression and least absolute shrinkage and selection operator Cox regression was applied to select radiomics features and clinical characteristics that could independently predict progression-free survival (PFS) and overall survival (OS). The predictive capability of the prediction model was evaluated using Harrell’s C-index. Nomograms and calibration curves were then generated. Survival curves were generated using the Kaplan-Meier method, and the log-rank test was used for comparison. Results The radiomics score achieved significantly better predictive performance for the estimation of PFS (C-index, 0.764 for training and 0.762 for testing) and OS (C-index, 0.793 for training and 0.750 for testing), compared with the 2018 FIGO staging system (C-index for PFS, 0.657 for training and 0.677 for testing; C-index for OS, 0.665 for training and 0.633 for testing) and clinical-predicting model (C-index for PFS, 0.731 for training and 0.725 for testing; C-index for OS, 0.708 for training and 0.693 for testing) (P < 0.05). The combined model constructed with T stage, lymph node metastasis position, and radiomics score achieved the best performance for the estimation of PFS (C-index, 0.792 for training and 0.809 for testing) and OS (C-index, 0.822 for training and 0.785 for testing), which were significantly higher than those of the radiomics score (P < 0.05). Conclusions The MRI-based radiomics score could provide effective information in predicting the PFS and OS in patients with LACSC treated with CCRT. The combined model (including MRI-based radiomics score and clinical characteristics) showed the best prediction performance.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3