Cine MR feature tracking analysis for diagnosing thymic epithelial tumors: a feasibility study

Author:

Takumi KojiORCID,Nagano Hiroaki,Mukai Akie,Ueda Kazuhiro,Tabata Kazuhiro,Yoshiura Takashi

Abstract

Abstract Background To assess the feasibility of the cine MR feature tracking technique for the evaluation of cardiovascular-induced morphological deformation in the diagnosis of thymic epithelial tumors (TETs). Methods Our study population consisted of 43 patients with pathologically proven TETs including 10 low-grade thymomas, 23 high-grade thymomas, and 10 thymic carcinomas. Cine MR images were acquired using a balanced steady-state free precession sequence with short periods of breath-hold in the axial and oblique planes in the slice with the largest lesion cross-sectional area. The tumor margin was manually delineated in the diastolic phase and was automatically tracked for all other cardiac phases. The change rates of the long-to-short diameter ratio (∆LSR) and tumor area (∆area) associated with pulsation were compared between the three pathological groups using the Kruskal–Wallis H test and the Mann–Whitney U test. A receiver-operating characteristic (ROC) curve analysis was performed to assess the ability of each parameter to differentiate thymic carcinomas from thymomas. Results ∆LSR and ∆area were significantly different among the three groups in the axial plane (p = 0.028 and 0.006, respectively) and in the oblique plane (p = 0.034 and 0.043, respectively). ∆LSR and ∆area values were significantly lower in thymic carcinomas than in thymomas in the axial plane (for both, p = 0.012) and in the oblique plane (p = 0.015 and 0.011, respectively). The area under the ROC curves for ∆LSR and ∆area for the diagnosis of thymic carcinoma ranged from 0.755 to 0.764. Conclusions Evaluation of morphological deformation using cine-MR feature tracking analysis can help diagnose histopathological subtypes of TETs and identify thymic carcinomas preoperatively.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3