Author:
Li Zongbao,Zhong Yifan,Lv Yan,Zheng Jianzhong,Hu Yu,Yang Yanyan,Li Yunxi,Sun Meng,Liu Siqian,Guo Yan,Zhang Mengchao,Zhou Le
Abstract
Abstract
Objectives
To develop and validate radiomics model based on computed tomography (CT) for preoperative prediction of CN0 status in patients with papillary thyroid carcinoma (PTC).
Methods
A total of 548 pathologically confirmed LNs (243 non-metastatic and 305 metastatic) two distinct hospitals were retrospectively assessed. A total of 396 radiomics features were extracted from arterial-phase CT images, where the strongest features containing the most predictive potential were further selected using the least absolute shrinkage and selection operator (LASSO) regression method. Delong test was used to compare the AUC values of training set, test sets and cN0 group.
Results
The Rad-score showed good discriminating performance with Area Under the ROC Curve (AUC) of 0.917(95% CI, 0.884 to 0.950), 0.892 (95% CI, 0.833 to 0.950) and 0.921 (95% CI, 868 to 0.973) in the training, internal validation cohort and external validation cohort, respectively. The test group of CN0 with a AUC of 0.892 (95% CI, 0.805 to 0.979). The accuracy was 85.4% (sensitivity = 81.3%; specificity = 88.9%) in the training cohort, 82.9% (sensitivity = 79.0%; specificity = 88.7%) in the internal validation cohort, 85.4% (sensitivity = 89.7%; specificity = 83.8%) in the external validation cohort, 86.7% (sensitivity = 83.8%; specificity = 91.3%) in the CN0 test group.The calibration curve demonstrated a significant Rad-score (P-value in H-L test > 0.05). The decision curve analysis indicated that the rad-score was clinically useful.
Conclusions
Radiomics has shown great diagnostic potential to preoperatively predict the status of cN0 in PTC.
Funder
National Natural Science Foundation of China
Jilin Provincial Department of science and technology
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献