The effects of volume of interest delineation on MRI-based radiomics analysis: evaluation with two disease groups

Author:

Zhang Xiao,Zhong Liming,Zhang Bin,Zhang Lu,Du Haiyan,Lu Lijun,Zhang Shuixing,Yang WeiORCID,Feng Qianjin

Abstract

Abstract Background Manual delineation of volume of interest (VOI) is widely used in current radiomics analysis, suffering from high variability. The tolerance of delineation differences and possible influence on each step of radiomics analysis are not clear, requiring quantitative assessment. The purpose of our study was to investigate the effects of delineation of VOIs on radiomics analysis for the preoperative prediction of metastasis in nasopharyngeal carcinoma (NPC) and sentinel lymph node (SLN) metastasis in breast cancer. Methods This study retrospectively enrolled two datasets (NPC group: 238 cases; SLN group: 146 cases). Three operations, namely, erosion, smoothing, and dilation, were implemented on the VOIs accurately delineated by radiologists to generate diverse VOI variations. Then, we extracted 2068 radiomics features and evaluated the effects of VOI differences on feature values by the intra-class correlation coefficient (ICC). Feature selection was conducted by Maximum Relevance Minimum Redundancy combined with 0.632+ bootstrap algorithms. The prediction performance of radiomics models with random forest classifier were tested on an independent validation cohort by the area under the receive operating characteristic curve (AUC). Results The larger the VOIs changed, the fewer features with high ICCs. Under any variation, SLN group showed fewer features with ICC ≥ 0.9 compared with NPC group. Not more than 15% top-predictive features identical to the accurate VOIs were observed across feature selection. The differences of AUCs of models derived from VOIs across smoothing or dilation with 3 pixels were not statistically significant compared with the accurate VOIs (p > 0.05) except for T2-weighted fat suppression images (smoothing: 0.845 vs. 0.725, p = 0.001; dilation: 0.800 vs. 0.725, p = 0.042). Dilation with 5 and 7 pixels contributed to remarkable AUCs in SLN group but the opposite in NPC group. The radiomics models did not perform well when tested by data from other delineations. Conclusions Differences in delineation of VOIs affected radiomics analysis, related to specific disease and MRI sequences. Differences from smooth delineation or expansion with 3 pixels width around the tumors or lesions were acceptable. The delineation for radiomics analysis should follow a predefined and unified standard.

Funder

National Natural Science Foundation of China

Guangdong Provincial Key Laboratory of Medical Imaging Processing

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3