Radiomics nomogram for the preoperative prediction of lymph node metastasis in pancreatic ductal adenocarcinoma

Author:

Bian Yun,Guo Shiwei,Jiang Hui,Gao Suizhi,Shao Chengwei,Cao Kai,Fang Xu,Li Jing,Wang Li,Ma Chao,Zheng Jianming,Jin Gang,Lu JianpingORCID

Abstract

Abstract Purpose To develop and validate a radiomics nomogram for the preoperative prediction of lymph node (LN) metastasis in pancreatic ductal adenocarcinoma (PDAC). Materials and methods In this retrospective study, 225 patients with surgically resected, pathologically confirmed PDAC underwent multislice computed tomography (MSCT) between January 2014 and January 2017. Radiomics features were extracted from arterial CT scans. The least absolute shrinkage and selection operator method was used to select the features. Multivariable logistic regression analysis was used to develop the predictive model, and a radiomics nomogram was built and internally validated in 45 consecutive patients with PDAC between February 2017 and December 2017. The performance of the nomogram was assessed in the training and validation cohort. Finally, the clinical usefulness of the nomogram was estimated using decision curve analysis (DCA). Results The radiomics signature, which consisted of 13 selected features of the arterial phase, was significantly associated with LN status (p < 0.05) in both the training and validation cohorts. The multivariable logistic regression model included the radiomics signature and CT-reported LN status. The individualized prediction nomogram showed good discrimination in the training cohort [area under the curve (AUC), 0.75; 95% confidence interval (CI), 0.68–0.82] and in the validation cohort (AUC, 0.81; 95% CI, 0.69–0.94) and good calibration. DCA demonstrated that the radiomics nomogram was clinically useful. Conclusions The presented radiomics nomogram that incorporates the radiomics signature and CT-reported LN status is a noninvasive, preoperative prediction tool with favorable predictive accuracy for LN metastasis in patients with PDAC.

Funder

National Science Foundation for Scientists of China

Clinical Research Plan of SHDC

234 Platform Discipline Consolidation Foundation Project

The Natural Science Foundation of Shanghai Science and Technology Innovation Action Plan

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3