Abstract
Abstract
Objectives
Tumor spread through air spaces (STAS) is associated with poor prognosis and impacts surgical options. We aimed to develop a user-friendly model based on 2-[18F] FDG PET/CT to predict STAS in stage I lung adenocarcinoma (LAC).
Materials and methods
A total of 466 stage I LAC patients who underwent 2-[18F] FDG PET/CT examination and resection surgery were retrospectively enrolled. They were split into a training cohort (n = 232, 20.3% STAS-positive), a validation cohort (n = 122, 27.0% STAS-positive), and a test cohort (n = 112, 29.5% STAS-positive) according to chronological order. Some commonly used clinical data, visualized CT features, and SUVmax were analyzed to identify independent predictors of STAS. A prediction model was built using the independent predictors and validated using the three chronologically separated cohorts. Model performance was assessed using ROC curves and calculations of AUC.
Results
The differences in age (P = 0.009), lesion density subtype (P < 0.001), spiculation sign (P < 0.001), bronchus truncation sign (P = 0.001), and SUVmax (P < 0.001) between the positive and negative groups were statistically significant. Age ≥ 56 years [OR(95%CI):3.310(1.150–9.530), P = 0.027], lesion density subtype (P = 0.004) and SUVmax ≥ 2.5 g/ml [OR(95%CI):3.268(1.021–1.356), P = 0.005] were the independent factors predicting STAS. Logistic regression was used to build the A-D-S (Age-Density-SUVmax) prediction model, and the AUCs were 0.808, 0.786 and 0.806 in the training, validation, and test cohorts, respectively.
Conclusions
STAS was more likely to occur in older patients, in solid lesions and higher SUVmax in stage I LAC. The PET/CT-based A-D-S prediction model is easy to use and has a high level of reliability in diagnosing.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献