CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study

Author:

Song Hongzheng,Yang Shifeng,Yu Boyang,Li Na,Huang Yonghua,Sun Rui,Wang Bo,Nie Pei,Hou Feng,Huang Chencui,Zhang Meng,Wang Hexiang

Abstract

Abstract Background To construct and assess a computed tomography (CT)-based deep learning radiomics nomogram (DLRN) for predicting the pathological grade of bladder cancer (BCa) preoperatively. Methods We retrospectively enrolled 688 patients with BCa (469 in the training cohort, 219 in the external test cohort) who underwent surgical resection. We extracted handcrafted radiomics (HCR) features and deep learning (DL) features from three-phase CT images (including corticomedullary-phase [C-phase], nephrographic-phase [N-phase] and excretory-phase [E-phase]). We constructed predictive models using 11 machine learning classifiers, and we developed a DLRN by combining the radiomic signature with clinical factors. We assessed performance and clinical utility of the models with reference to the area under the curve (AUC), calibration curve, and decision curve analysis (DCA). Results The support vector machine (SVM) classifier model based on HCR and DL combined features was the best radiomic signature, with AUC values of 0.953 and 0.943 in the training cohort and the external test cohort, respectively. The AUC values of the clinical model in the training cohort and the external test cohort were 0.752 and 0.745, respectively. DLRN performed well on both data cohorts (training cohort: AUC = 0.961; external test cohort: AUC = 0.947), and outperformed the clinical model and the optimal radiomic signature. Conclusion The proposed CT-based DLRN showed good diagnostic capability in distinguishing between high and low grade BCa.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3