Mandibular shape prediction using cephalometric analysis: applications in craniofacial analysis, forensic anthropology and archaeological reconstruction

Author:

Omran Ahmed,Wertheim David,Smith Kathryn,Liu Ching Yiu Jessica,Naini Farhad B.ORCID

Abstract

Abstract Background The human mandible is variable in shape, size and position and any deviation from normal can affect the facial appearance and dental occlusion. Objectives The objectives of this study were to determine whether the Sassouni cephalometric analysis could help predict two-dimensional mandibular shape in humans using cephalometric planes and landmarks. Materials and methods A retrospective computerised analysis of 100 lateral cephalometric radiographs taken at Kingston Hospital Orthodontic Department was carried out. Results Results showed that the Euclidean straight-line mean difference between the estimated position of gonion and traced position of gonion was 7.89 mm and the Euclidean straight-line mean difference between the estimated position of pogonion and the traced position of pogonion was 11.15 mm. The length of the anterior cranial base as measured by sella-nasion was positively correlated with the length of the mandibular body gonion-menton, r = 0.381 and regression analysis showed the length of the anterior cranial base sella-nasion could be predictive of the length of the mandibular body gonion-menton by the equation 22.65 + 0.5426x, where x = length of the anterior cranial base (SN). There was a significant association with convex shaped palates and oblique shaped mandibles, p = 0.0004. Conclusions The method described in this study can be used to help estimate the position of cephalometric points gonion and pogonion and thereby sagittal mandibular length. This method is more accurate in skeletal class I cases and therefore has potential applications in craniofacial anthropology and the ‘missing mandible’ problem in forensic and archaeological reconstruction.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3