SLC22A3 methylation-mediated gene silencing predicts adverse prognosis in acute myeloid leukemia

Author:

Gu Yu,Xu Zi-jun,Zhou Jing-dong,Wen Xiang-mei,Jin Ye,Yuan Qian,Xia Pei-hui,Feng Yuan,Yang Lei,Lin Jiang,Qian Jun

Abstract

Abstract Background We screened out several hypermethylated solute carrier (SLC) family genes in acute myeloid leukemia by reduced representation bisulfite sequencing. SLC22A3 encodes an organic cation transport protein, which is critical for drug transportation and cellular detoxification. SLC22A3 is significantly downregulated and associated with tumor progression and worse prognosis in a variety of solid tumors. However, there are no data available regarding the role of SLC22 in AML. This study aimed to explore the regulatory mechanism of DNA methylation on SLC22A3 expression, as well as its clinical significance in AML prognosis. Results SLC22A3 was identified as the sole prognosis-associated gene among SLCs based on TCGA and Beat AML databases. Bone marrow mononuclear cells (BMMNCs) from AML, MDS patients, and healthy donors were enrolled in this study. SLC22A3 methylation was significantly increased in AML compared with controls and MDS patients; meanwhile, the expression level of SLC22A3 was decreased. SLC22A3 hypermethylation presented an obvious association with some specific clinical characteristics and affected the survival time of AML patients as an independent risk indicator. SLC22A3 expression changed regularly as the disease complete remissions and relapses. Demethylation drug 5-aza-2′-deoxycytidine (DAC) activated transcription and increased mRNA expression of SLC22A3 in leukemia cell lines and AML fresh BMMNCs. Knockdown of SLC22A3 in leukemia cells enhanced cell proliferation and suppressed cell apoptosis. Data from public programs were used for auxiliary screening of probable molecular mechanisms of SLC22A3 in the antileukemia effect. Conclusions Our results showed that increased methylation and decreased expression of SLC22A3 may be indicators of poor prognosis in AML. Methylation-silenced SLC22A3 expression may have potential guiding significance on antileukemia effect of DAC.

Funder

National Natural Science Foundation of China

Research Innovation Program for College Graduates of Jiangsu Province

Zhenjiang Clinical Research Center of Hematology

Social Development Foundation of Zhenjiang

Scientific Research Project of The Fifth 169 Project of Zhenjiang

Medical Innovation Team of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3