Integrated single-cell RNA-seq and DNA methylation reveal the effects of air pollution in patients with recurrent spontaneous abortion

Author:

Zhu Weiqiang,Gu Yan,Li Min,Zhang Zhaofeng,Liu Junwei,Mao Yanyan,Zhu Qianxi,Zhao Lin,Shen Yupei,Chen Fujia,Xia Lingjin,He Lin,Du Jing

Abstract

Abstract Background Maternal air pollutants exposure is associated with a number of adverse pregnancy outcomes, including recurrent spontaneous abortion (RSA). However, the underlying mechanisms are still unknown. The present study aimed to understand the mechanism of RSA and its relationship with air pollution exposure. We compared data of decidual tissue from individuals with induced abortions and those with RSA by bulk RNA sequencing (RNA-seq), reduced representation bisulfite sequencing (RRBS), and single-cell RNA sequencing (scRNA-seq). Differentially expressed genes (DEGs) were verified using RT-qPCR and pyrosequencing. A logistic regression model was used to investigate the association between air pollutants exposure and RSA. Results We identified 98 DEGs with aberrant methylation by overlapping the RRBS and RNA-seq data. Nineteen immune cell subsets were identified. Compared with normal controls, NK cells and macrophages accounted for different proportions in the decidua of patients with RSA. We observed that the methylation and expression of IGF2BP1 were different between patients with RSA and controls. Furthermore, we observed significant positive associations between maternal air pollutants exposure during the year prior to pregnancy and in early pregnancy and the risk of RSA. Mediation analyses suggested that 24.5% of the effects of air pollution on the risk of RSA were mediated through IGF2BP1 methylation. Conclusion These findings reveal a comprehensive cellular and molecular mechanism of RSA and suggest that air pollution might cause pregnancy loss by affecting the methylation level of the IGF2BP1 promoter.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3