5-Hydroxymethylation alterations in cell-free DNA reflect molecular distinctions of diffuse large B cell lymphoma at different primary sites

Author:

Shen Ye,Ou Jinping,He Bo,Yang Jinmin,Liu Huihui,Wang Lihong,Wang Bingjie,Gao Liang,Yi Chengqi,Peng Jinying,Cen Xinan

Abstract

Abstract Background 5-Hydroxymethylcytosine (5hmC), an important DNA epigenetic modification, plays a vital role in tumorigenesis, progression and prognosis in many cancers. Diffuse large B cell lymphoma (DLBCL) can involve almost any organ, but the prognosis of patients with DLBCL at different primary sites varies greatly. Previous studies have shown that 5hmC displays a tissue-specific atlas, but its role in DLBCLs at different primary sites remains unknown. Results We found that primary gastric DLBCL (PG-DLBCL) and lymph node-involved DLBCL (LN-DLBCL) patients had a favorable prognosis, while primary central nervous system DLBCL (PCNS-DLBCL) patients faced the worst prognosis, followed by primary testicular DLBCL (PT-DLBCL) and primary intestinal DLBCL (PI-DLBCL) patients. Thus, we used hmC-CATCH, a bisulfite-free and cost-effective 5hmC detection technology, to first generate the 5hmC profiles from plasma cell-free DNA (cfDNA) of DLBCL patients at these five different primary sites. Specifically, we found robust cancer-associated features that could be used to distinguish healthy individuals from DLBCL patients and distinguish among different primary sites. Through functional enrichment analysis of the differentially 5hmC-enriched genes, almost all DLBCL patients were enriched in tumor-related pathways, and DLBCL patients at different primary sites had unique characteristics. Moreover, 5hmC-based biomarkers can also highly reflect clinical features. Conclusions Collectively, we revealed the primary site differential 5hmC regions of DLBCL at different primary sites. This new strategy may help develop minimally invasive and effective methods to diagnose and determine the primary sites of DLBCL.

Funder

China Postdoctoral Science Foundation

the National Natural Science Foundation of China

the National Key R&D Program

the Research and Demonstration Application of clinical diagnosis and treatment technology in the capital of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3