A new nucleosomic-based model to identify and diagnose SSc-ILD

Author:

Guiot JulienORCID,Henket Monique,Andre Béatrice,Herzog Marielle,Hardat Nathalie,Njock Makon-Sebastien,Moermans Catherine,Malaise Michel,Louis Renaud

Abstract

Abstract Background Systemic sclerosis (SSc) is a rare connective tissue disease associated with rapid evolving interstitial lung disease (SSc-ILD), driving its mortality. Specific biomarkers associated with the evolution of the lung disease are highly needed. We aimed to identify specific biomarkers of SSc-ILD to predict the evolution of the disease. Nucleosomes are stable DNA/protein complexes that are shed into the blood stream making them ideal candidates for biomarkers. Methods We studied circulating cell-free nucleosomes (cf-nucleosomes) in SSc patients, 31 with ILD (SSc-ILD) and 67 without ILD. We analyzed plasma levels for cf-nucleosomes and investigated whether global circulating nucleosome levels in association with or without other biomarkers of interest for systemic sclerosis or lung fibrosis (e.g., serum growth factors: IGFBP-1 and the MMP enzyme: MMP-9), could be suitable potential biomarkers for the correct identification of SSc-ILD disease. Results We found that H3.1 nucleosome levels were significantly higher in patients with SSc-ILD compared SSc patients without ILD (p < 0.05) and levels of MMP-9 were significantly increased in patients with SSc-ILD compared to SSc patients without ILD (p < 0.05). Conversely, IGFBP-1 was significantly reduced in patients with SSc-ILD compared to SSc without ILD (p < 0.001). The combination of cf-nucleosomes H3.1 coupled to MMP-9 and IGFBP-1 increased the sensitivity for the differential detection of SSc-ILD. High levels of accuracy were reached with this combined model: its performances are strong with 68.4% of positive predictive value and 77.2% of negative predictive value for 90% of specificity. With our model, we identified a significant negative correlation with FVC % pred (r = −0.22) and TLC % pred (r = −0.31). The value of our model at T1 (baseline) has a predictive power over the Rodnan score at T2 (after 6-18 months), showed by a significant linear regression with R2 = 19% (p = 0.013). We identified in the sole group of SSc-ILD patients a significant linear regression with a R2 = 54.4% with the variation of DLCO between T1 and T2 (p < 0.05). Conclusion In our study, we identified a new blood-based model with nucleosomic biomarker in order to diagnose SSc-ILD in a SSc cohort. This model is correlated with TLC and FVC at baseline and predictive of the skin evolution and the DLCO. Further longitudinal exploration studies should be performed in order to evaluate the potential of such diagnostic and predictive model.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3