Age-, tumor-, and metastatic tissue-associated DNA hypermethylation of a T-box brain 1 locus in human kidney tissue

Author:

Serth JürgenORCID,Peters Inga,Dubrowinskaja Natalia,Reese Christel,Albrecht Knut,Klintschar Michael,Lafos Marcel,Grote Alexander,Becker Albert,Hennenlotter Jörg,Stenzl Arnulf,Tezval Hossein,Kuczyk Markus A.

Abstract

Abstract Background While a considerable number of tumor-specific hypermethylated loci have been identified in renal cell cancer (RCC), DNA methylation of loci showing successive increases in normal, tumoral, and metastatic tissues could point to genes with high relevance both for the process of tumor development and progression. Here, we report that DNA methylation of a locus in a genomic region corresponding to the 3′UTR of the transcription factor T-box brain 1 (TBR1) mRNA accumulates in normal renal tissues with age and possibly increased body mass index. Moreover, a further tissue-specific increase of methylation was observed for tumor and metastatic tissue samples. Results Biometric analyses of the TCGA KIRC methylation data revealed candidate loci for age-dependent and tumor-specific DNA methylation within the last exon and in a genomic region corresponding to the 3′UTR TBR1 mRNA. To evaluate whether methylation of TBR1 shows association with RCC carcinogenesis, we measured 15 tumor cell lines and 907 renal tissue samples including 355 normal tissues, 175 tissue pairs of normal tumor adjacent and corresponding tumor tissue as well 202 metastatic tissues samples of lung, bone, and brain metastases by the use of pyrosequencing. Statistical evaluation demonstrated age-dependent methylation in normal tissue (R = 0.72, p < 2 × 10−16), association with adiposity (P = 0.019) and tumor-specific hypermethylation (P = 6.1 × 10−19) for RCC tissues. Comparison of tumor and metastatic tissues revealed higher methylation in renal cancer metastases (P = 2.65 × 10−6). Conclusions Our analyses provide statistical evidence of association between methylation of TBR1 and RCC development and disease progression.

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Developmental Biology,Genetics,Molecular Biology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3