Liquid biopsies based on DNA methylation as biomarkers for the detection and prognosis of lung cancer

Author:

Li Peilong,Liu Shibiao,Du Lutao,Mohseni Ghazal,Zhang Yi,Wang Chuanxin

Abstract

AbstractLung cancer (LC) is the main cause of cancer-related mortality. Most LC patients are diagnosed in an advanced stage when the symptoms are obvious, and the prognosis is quite poor. Although low-dose computed tomography (LDCT) is a routine clinical examination for early detection of LC, the false-positive rate is over 90%. As one of the intensely studied epigenetic modifications, DNA methylation plays a key role in various diseases, including cancer and other diseases. Hypermethylation in tumor suppressor genes or hypomethylation in oncogenes is an important event in tumorigenesis. Remarkably, DNA methylation usually occurs in the very early stage of malignant tumors. Thus, DNA methylation analysis may provide some useful information about the early detection of LC. In recent years, liquid biopsy has developed rapidly. Liquid biopsy can detect and monitor both primary and metastatic malignant tumors and can reflect tumor heterogeneity. Moreover, it is a minimally invasive procedure, and it causes less pain for patients. This review summarized various liquid biopsies based on DNA methylation for LC. At first, we briefly discussed some emerging technologies for DNA methylation analysis. Subsequently, we outlined cell-free DNA (cfDNA), sputum, bronchoalveolar lavage fluid, bronchial aspirates, and bronchial washings DNA methylation-based liquid biopsy for the early detection of LC. Finally, the prognostic value of DNA methylation in cfDNA and sputum and the diagnostic value of other DNA methylation-based liquid biopsies for LC were also analyzed.

Funder

the National Natural Science Foundation of China

the Key Research and Development Program of Shandong Province

Taishan Scholars Climbing Program of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3