Author:
Ahn Jongseong,Heo Sunghoon,Ahn Soo-jin,Bang Duhee,Lee Sang-Hak
Abstract
Abstract
Background
The factors affecting cardioprotective collateral circulation are still incompletely understood. Recently, characteristics, such as CpG methylation of cell-free DNA (cfDNA), have been reported as markers with clinical utility. The aim of this study was to evaluate whether cfDNA methylation patterns are associated with the grade of coronary collateral circulation (CCC).
Result
In this case–control study, clinical and angiographic data were obtained from 143 patients (mean age, 58 years, male 71%) with chronic total coronary occlusion. Enzymatic methyl-sequencing (EM-seq) libraries were prepared using the cfDNA extracted from the plasma. Data were processed to obtain the average methylation fraction (AMF) tables of genomic regions from which blacklisted regions were removed. Unsupervised analysis of the obtained AMF values showed that some of the changes in methylation were due to CCC. Through random forest preparation process, 256 differentially methylated region (DMR) candidates showing strong association with CCC were selected. A random forest classifier was then constructed, and the area under the curve of the receiver operating characteristic curve indicated an appropriate predictive function for CCC. Finally, 20 DMRs were identified to have significantly different AMF values between the good and poor CCC groups. Particularly, the good CCC group exhibited hypomethylated DMRs. Pathway analysis revealed five pathways, including TGF-beta signaling, to be associated with good CCC.
Conclusion
These data have demonstrated that differential hypomethylation was identified in dozens of cfDNA regions in patients with good CCC. Our results support the clinical utility of noninvasively obtained epigenetic signatures for predicting collateral circulation in patients with vascular diseases.
Funder
Ministry of Science, ICT and Future Planning
Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea
Severance Hospital Research Fund for Clinical excellence
National Research Foundation of Korea grant funded by the Korean government
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Developmental Biology,Genetics,Molecular Biology
Reference52 articles.
1. Jamaiyar A, Juguilon C, Dong F, Cumpston D, Enrick M, Chilian WM, Yin L. Cardioprotection during ischemia by coronary collateral growth. Am J Physiol Heart Circ Physiol. 2019;316(1):1–9.
2. Nakajima H, Chiba A, Fukumoto M, Morooka N, Mochizuki N. Zebrafish vascular development: general and tissue-specific regulation. J Lipid Atheroscler. 2021;10(2):145–59.
3. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.
4. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6(8):597–610.
5. Park JW, Bae YS. Downregulation of JMJD2a and LSD1 is involved in CK2 inhibition-mediated cellular senescence through the p53-SUV39h1 pathway. BMB Rep. 2022;10:5482.