Author:
Huang Chia-Hung,Chang Man-Chen,Lai Yung-Chun,Lin Chun-Yen,Hsu Cho-Hsien,Tseng Bo-Yuan,Hsiao Chuhsing Kate,Lu Tzu-Pin,Yu Sung-Liang,Hsieh Sung-Tsang,Chen Wei J.
Abstract
Abstract
Background
Despite the brain’s high demand for energy, research on its epigenetics focuses on nuclear methylation, and much of the mitochondrial DNA methylation remains seldom investigated. With a focus on the nucleus accumbens (NAcc) and the prefrontal cortex (PFC), we aimed to identify the mitochondrial methylation signatures for (1) distinguishing the two brain areas, (2) correlating with aging, and (3) reflecting the influence of illicit drugs on the brain.
Result
We collected the brain tissue in the NAcc and the PFC from the deceased individuals without (n = 39) and with (n = 14) drug use and used whole-genome bisulfite sequencing to cover cytosine sites in the mitochondrial genome. We first detected differential methylations between the NAcc and the PFC in the nonusers group (P = 3.89 × 10–9). These function-related methylation differences diminished in the drug use group due to the selective alteration in the NAcc. Then, we found the correlation between the methylation levels and the chronological ages in the nonusers group (R2 = 0.34 in the NAcc and 0.37 in the PFC). The epigenetic clocks in illicit drug users, especially in the ketamine users, were accelerated in both brain regions by comparison with the nonusers. Finally, we summarized the effect of the illicit drugs on the methylation, which could significantly differentiate the drug users from the nonusers (AUC = 0.88 in the NAcc, AUC = 0.94 in the PFC).
Conclusion
The mitochondrial methylations were different between different brain areas, generally accumulated with aging, and sensitive to the effects of illicit drugs. We believed this is the first report to elucidate comprehensively the importance of mitochondrial DNA methylation in human brain.
Funder
Ministry of Science and Technology, Taiwan
National Health Research Institutes
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Developmental Biology,Genetics,Molecular Biology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献