Identification of hepatocellular carcinoma subtypes based on PcG-related genes and biological relevance with cancer cells

Author:

Fu Yunong,Yang Kaibo,Wu Kunjin,Wang Hai,Li Qinglin,Zhang Fengping,Yang Kun,Yao Qing,Ma Xiaohua,Deng Yujie,Zhang Jingyao,Liu Chang,Qu Kai

Abstract

Abstract Background Hepatocellular carcinoma (HCC) is an extensive heterogeneous disease where epigenetic factors contribute to its pathogenesis. Polycomb group (PcG) proteins are a group of subunits constituting various macro-molecular machines to regulate the epigenetic landscape, which contributes to cancer phenotype and has the potential to develop a molecular classification of HCC. Results Here, based on multi-omics data analysis of DNA methylation, mRNA expression, and copy number of PcG-related genes, we established an epigenetic classification system of HCC, which divides the HCC patients into two subgroups with significantly different outcomes. Comparing these two epigenetic subgroups, we identified different metabolic features, which were related to epigenetic regulation of polycomb-repressive complex 1/2 (PRC1/2). Furthermore, we experimentally proved that inhibition of PcG complexes enhanced the lipid metabolism and reduced the capacity of HCC cells against glucose shortage. In addition, we validated the low chemotherapy sensitivity of HCC in Group A and found inhibition of PRC1/2 promoted HCC cells’ sensitivity to oxaliplatin in vitro and in vivo. Finally, we found that aberrant upregulation of CBX2 in Group A and upregulation of CBX2 were associated with poor prognosis in HCC patients. Furthermore, we found that manipulation of CBX2 affected the levels of H3K27me3 and H2AK119ub. Contributions Our study provided a novel molecular classification system based on PcG-related genes data and experimentally validated the biological features of HCC in two subgroups. Our founding supported the polycomb complex targeting strategy to inhibit HCC progression where CBX2 could be a feasible therapeutic target.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

"Basic-Clinical" integrated innovation project of Xi'an Jiaotong University

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3