H4-methylation regulators mediated epitranscriptome patterns and tumor microenvironment infiltration characterization in hepatocellular carcinoma

Author:

Yu Linyuan,Ji Tao,Liao Wei,Xu Yuyan,Fang Yinghao,Zhu Qing,Nie Jianmin,Yang Dinghua

Abstract

AbstractEpigenetic modifications are involved in the remodeling of the tumor microenvironment (TME) and the regulation of immune response. Nonetheless, the role of histone H4 methylation (H4M) modification in the TME and immune regulation of hepatocellular carcinoma (HCC) is unknown. As a result, the purpose of this research is to discover H4M-mediated modification patterns and their effects on TME and immunologic characteristics in HCC. A total of 2305 samples were enrolled from 13 different cohorts. With the help of consensus clustering analysis, three distinct H4M modification patterns were identified. The cell-infiltrating characteristics of TME under these three patterns were highly consistent with their enriched biological processes and clinical outcome. The H4Mscore was then created using principal component analysis algorithm to quantify the H4M modification pattern of each individual tumor and was systematically correlated with representative tumor characteristics. We found that analyzing H4M modification patterns within individual tumors could predict TME infiltration, homologous recombination deficiency (HRD), intratumor heterogeneity, proliferation activity, mRNA stemness index, and prognosis. The group with a low H4Mscore had an inflamed TME phenotype and a better immunotherapy response, as well as a better survival outcome. The prognostic value of H4Mscore was validated in three internal cohorts and five external cohorts, respectively. In external immunotherapy cohorts, the low H4Mscore was also linked to an enhanced response to anti-PD-1/L1 and anti-CTLA4 immunotherapy and a better prognosis. This study revealed that H4M modification played an important role in forming TME diversity and complexity. Evaluating the H4M modification pattern of individual tumors could help us learn more about TME and develop more effective immunotherapy strategies.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3