Methylation analysis by targeted bisulfite sequencing in large for gestational age (LGA) newborns: the LARGAN cohort

Author:

Carrizosa-Molina TamaraORCID,Casillas-Díaz Natalia,Pérez-Nadador Iris,Vales-Villamarín Claudia,López-Martínez Miguel Ángel,Riveiro-Álvarez Rosa,Wilhelm Larry,Cervera-Juanes Rita,Garcés CarmenORCID,Lomniczi AlejandroORCID,Soriano-Guillén LeandroORCID

Abstract

Abstract Background In 1990, David Barker proposed that prenatal nutrition is directly linked to adult cardiovascular disease. Since then, the relationship between adult cardiovascular risk, metabolic syndrome and birth weight has been widely documented. Here, we used the TruSeq Methyl Capture EPIC platform to compare the methylation patterns in cord blood from large for gestational age (LGA) vs adequate for gestational age (AGA) newborns from the LARGAN cohort. Results We found 1672 differentially methylated CpGs (DMCs) with a nominal p < 0.05 and 48 differentially methylated regions (DMRs) with a corrected p < 0.05 between the LGA and AGA groups. A systems biology approach identified several biological processes significantly enriched with genes in association with DMCs with FDR < 0.05, including regulation of transcription, regulation of epinephrine secretion, norepinephrine biosynthesis, receptor transactivation, forebrain regionalization and several terms related to kidney and cardiovascular development. Gene ontology analysis of the genes in association with the 48 DMRs identified several significantly enriched biological processes related to kidney development, including mesonephric duct development and nephron tubule development. Furthermore, our dataset identified several DNA methylation markers enriched in gene networks involved in biological pathways and rare diseases of the cardiovascular system, kidneys, and metabolism. Conclusions Our study identified several DMCs/DMRs in association with fetal overgrowth. The use of cord blood as a material for the identification of DNA methylation biomarkers gives us the possibility to perform follow-up studies on the same patients as they grow. These studies will not only help us understand how the methylome responds to continuum postnatal growth but also link early alterations of the DNA methylome with later clinical markers of growth and metabolic fitness.

Funder

NIH

Fundacion Familia Alonso

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3