Whole-blood methylation signatures are associated with and accurately classify multiple sclerosis disease severity

Author:

Campagna Maria Pia,Xavier Alexandre,Lea Rodney A.,Stankovich Jim,Maltby Vicki E.,Butzkueven Helmut,Lechner-Scott Jeannette,Scott Rodney J.,Jokubaitis Vilija G.

Abstract

Abstract Background The variation in multiple sclerosis (MS) disease severity is incompletely explained by genetics, suggesting genetic and environmental interactions are involved. Moreover, the lack of prognostic biomarkers makes it difficult for clinicians to optimise care. DNA methylation is one epigenetic mechanism by which gene–environment interactions can be assessed. Here, we aimed to identify DNA methylation patterns associated with mild and severe relapse-onset MS (RMS) and to test the utility of methylation as a predictive biomarker. Methods We conducted an epigenome-wide association study between 235 females with mild (n = 119) or severe (n = 116) with RMS. Methylation was measured with the Illumina methylationEPIC array and analysed using logistic regression. To generate hypotheses about the functional consequence of differential methylation, we conducted gene set enrichment analysis using ToppGene. We compared the accuracy of three machine learning models in classifying disease severity: (1) clinical data available at baseline (age at onset and first symptoms) built using elastic net (EN) regression, (2) methylation data using EN regression and (3) a weighted methylation risk score of differentially methylated positions (DMPs) from the main analysis using logistic regression. We used a conservative 70:30 test:train split for classification modelling. A false discovery rate threshold of 0.05 was used to assess statistical significance. Results Females with mild or severe RMS had 1472 DMPs in whole blood (839 hypermethylated, 633 hypomethylated in the severe group). Differential methylation was enriched in genes related to neuronal cellular compartments and processes, and B-cell receptor signalling. Whole-blood methylation levels at 1708 correlated CpG sites classified disease severity more accurately (machine learning model 2, AUC = 0.91) than clinical data (model 1, AUC = 0.74) or the wMRS (model 3, AUC = 0.77). Of the 1708 selected CpGs, 100 overlapped with DMPs from the main analysis at the gene level. These overlapping genes were enriched in neuron projection and dendrite extension, lending support to our finding that neuronal processes, rather than immune processes, are implicated in disease severity. Conclusion RMS disease severity is associated with whole-blood methylation at genes related to neuronal structure and function. Moreover, correlated whole-blood methylation patterns can assign disease severity in females with RMS more accurately than clinical data available at diagnosis.

Funder

Multiple Sclerosis Research Australia

Royal Melbourne Hospital Home Lottery Grant

Pennycook Foundation Grant

MSBase Foundation Project Grant

Charity Works for MS Project Grant

Monash University Project Grant

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3