Abstract
Abstract
Background
There is considerable evidence that epigenetic mechanisms and DNA methylation are critical drivers of immune cell lineage differentiation and activation. However, there has been limited coordinated investigation of common epigenetic pathways among cell lineages. Further, it remains unclear if long-lived memory cell subtypes differentiate distinctly by cell lineages.
Results
We used the Illumina EPIC array to investigate the consistency of DNA methylation in B cell, CD4 T, and CD8 T naïve and memory cells states. In the process of naïve to memory activation across the three lineages, we identify considerable shared epigenetic regulation at the DNA level for immune memory generation. Further, in central to effector memory differentiation, our analyses revealed specific CpG dinucleotides and genes in CD4 T and CD8 T cells with DNA methylation changes. Finally, we identified unique DNA methylation patterns in terminally differentiated effector memory (TEMRA) CD8 T cells compared to other CD8 T memory cell subtypes.
Conclusions
Our data suggest that epigenetic alterations are widespread and essential in generating human lymphocyte memory. Unique profiles are involved in methylation changes that accompany memory genesis in the three subtypes of lymphocytes.
Funder
NIH
Department of Defense
NIGMS
American Association for Cancer Research
NCI
Magnin Newman Endowment for Neuro-oncology
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Developmental Biology,Genetics,Molecular Biology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献