Author:
Qi Jie,Shi Yue,Tan Yezhen,Zhang Qi,Zhang Jianye,Wang Jilu,Huang Cong,Ci Weimin
Abstract
Abstract
Background
DNA 5-hydroxymethylcytosine (5hmC) is produced by dynamic 5mC oxidation process contributing to tissue specification, and loss of 5hmC has been reported in multiple cancers including genitourinary cancers. However, 5hmC is also cell-type specific, and its variability may exist between differentiated tumor cells and cancer stem cells. Thus, cancer-associated changes in 5hmC may be contributed by distinct sets of tumor cells within the tumor tissues.
Results
Here, we applied a sensitive immunoprecipitation-based method (hMeDIP-seq) to analyze 5hmC changes during genitourinary carcinogenesis (including prostate, urothelial and kidney). We confirmed the tissue-specific distribution of 5hmC in genitourinary tissues and identified regional gain and global loss of 5hmC coexisting in genitourinary cancers. The genes with gain of 5hmC during tumorigenesis were functionally enriched in regulating stemness and hypoxia, whereas were associated with poor clinical prognosis irrespective of their differences in tumor type. We identified that gain of 5hmC occurred in soft fibrin gel-induced 3D tumor spheres with a tumor-repopulating phenotype in two prostate cancer cell lines, 22RV1 and PC3, compared with conventional two-dimensional (2D) rigid dishes. Then, we defined a malignant signature derived from the differentially hydroxymethylated regions affected genes of cancer stem-like cells, which could predict a worse clinical outcome and identified phenotypically malignant populations of cells from prostate cancer tumors. Notably, an oxidation-resistant vitamin C derivative, ascorbyl phosphate magnesium, restored 5hmC and killed the cancer stem cell-like cells leading to apoptosis in prostate cancer cell lines.
Conclusions
Collectively, our study dissects the regional gain of 5hmC in maintaining cancer stem-like cells and related to poor prognosis, which provides proof of concept for an epigenetic differentiation therapy with vitamin C by 5hmC reprogramming.
Graphic Abstract
Funder
the National Natural Science Foundation of China
the National Key R&D Program of China
the CAS Strategic Priority Research Program
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Developmental Biology,Genetics,Molecular Biology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献