Abstract
Abstract
Background
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Early detection of CRC can significantly reduce its mortality rate. Current method of CRC diagnosis relies on the invasive endoscopy. Non-invasive assays including fecal occult blood testing (FOBT) and fecal immunological test (FIT) are compromised by low sensitivity and specificity, especially at early stages. Thus, a non-invasive and accurate approach for CRC screening would be highly desirable.
Results
A new qPCR-based assay combining the simultaneous detection of the DNA methylation status of ten candidate genes was used to examine plasma samples from 56 normal controls, 6 hyperplastic polys, 9 non-advanced adenomas (NAAs), 22 advanced adenomas (AAs) and 175 CRC patients, using 10 ng of cfDNA. We further built a logistic regression model for CRC diagnosis. We tested ten candidate methylation markers including twist1, vav3-as1, fbn1, c9orf50, sfmbt2, kcnq5, fam72c, itga4, kcnj12 and znf132. All markers showed moderate diagnostic performance with AUCs ranging from 0.726 to 0.815. Moreover, a 4-marker model, comprised of two previously reported markers (c9orf50 and twist1) and two novel ones (kcnj12 and znf132), demonstrated high performance for detecting colorectal cancer in an independent validation set (N = 69) with an overall AUC of 0.911 [95% confidence interval (CI) 0.834–0.988], sensitivity of 0.800 [95% CI 0.667–0.933] and specificity of 0.971 [95% CI 0.914–1.000]. The stage-stratified sensitivity of the model was 0.455 [95% CI 0.227–0.682], 0.667 [95% CI 0.289–1.000], 0.800 [95% CI 0.449–1.000], 0.800 [95% CI 0.449–1.000] and 0.842 [95% CI 0.678–1.000] for advanced adenoma and CRC stage I-IV, respectively.
Conclusion
kcnj12 and znf132 are two novel methylation biomarkers for CRC diagnosis. The 4-marker methylation model provides a new non-invasive choice for CRC screening and interception.
Funder
Scheme of Guangzhou for Leading Team in Innovation
Scheme of Guangzhou for Leading Talents in Innovation and Entrepreneurship
Scheme of Guangzhou Economic and Technological Development District for Leading Talents in Innovation and Entrepreneurship
National Key R&D Program of China
Clinical Innovation Research Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory
Sun Yat-sen University 5010 Project
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Developmental Biology,Genetics,Molecular Biology