Silencing or inhibition of H3K79 methyltransferase DOT1L induces cell cycle arrest by epigenetically modulating c-Myc expression in colorectal cancer

Author:

Yang Liqun,Lei Qian,Li Lin,Yang Jie,Dong Zhen,Cui HongjuanORCID

Abstract

Abstract Background Epigenetic regulations play pivotal roles in tumorigenesis and cancer development. Disruptor of telomeric silencing-1-like (DOT1L), also known as KMT4, is the only identified histone methyltransferase that catalyzes the mono-, di-, and tri-methylation of lysine 79 histone 3 (H3K79). However, little is known about the effect of H3K79 methylation on the modulation of colorectal cancer (CRC) development. Methods DOT1L expression profiles in different subgroups of CRC tissues and its clinical significances were analyzed from some online datasheets. DOT1L in CRC cell lines was silenced by either lentivirus-mediated knockdown or inhibited by its specific inhibitor, EPZ004777. Then cell proliferation was detected by MTT assay, BrdU assay, and soft agar assay; cell cycle was detected by cytometry; and tumorigenicity was detected by using nude mice xenograft models. Clinical co-expression was analyzed between DOT1L and c-Myc. Chromatin immunoprecipitation (ChIP) assay was used to determine whether the translation of c-Myc was epigenetically regulated by H3K79me2 induced by DOT1L. c-Myc overexpression was used to rescue the cell cycle arrest and tumor growth induced by DOT1L silencing or inhibition in CRC. Results We found that DOT1L was highly expressed in colorectal cancer and was negatively related to the prognosis of patients with CRC. Silencing or inhibition of DOT1L blocked cell proliferation, BrdU incorporation, self-renewal capability in vitro, and tumorigenicity in vivo. Besides, inhibition or silencing of DOT1L also induced cell cycle arrest at S phase, as well as decreased the expression of CDK2 and Cyclin A2. Furthermore, in the clinical databases of CRC, we found that the expression of DOT1L was positively correlated with that of c-Myc, a major regulator in the upstream of cell cycle–related factors. Besides, c-Myc expression was downregulated after DOT1L knockdown and c-Myc restoration rescued decrease of cell proliferation, BrdU corporation, self-renewal capability, cell cycle progression in vitro and tumorigenicity in vivo induced by DOT1L silencing. Then we found that H3K79 methylation was decreased after DOT1L knockdown. ChIP assay showed that H3K79me2 was enriched on the – 682~+ 284 region of c-Myc promoter, and the enrichment was decreased after DOT1L inhibition. Conclusions Our results show that DOT1L epigenetically promotes the transcription of c-Myc via H3K79me2. DOT1L silencing or inhibition induces cell cycle arrest at S phase. DOT1L is a potential marker for colorectal cancer and EPZ004777 may be a potential drug for the treatment of colorectal cancer.

Funder

Young Scientists Fund

Major Research Plan

National Key Research and Development Program of China

the Special Program of Chongqing Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Research and Innovation Project of Graduate Students in Chongqing

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Developmental Biology,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3