Novel visualized quantitative epigenetic imprinted gene biomarkers diagnose the malignancy of ten cancer types

Author:

Shen Rulong,Cheng Tong,Xu Chuanliang,Yung Rex C.,Bao Jiandong,Li Xing,Yu Hongyu,Lu Shaohua,Xu Huixiong,Wu Hongxun,Zhou Jian,Bu Wenbo,Wang Xiaonan,Si Han,Shi Panying,Zhao Pengcheng,Liu Yun,Deng Yongjie,Zhu Yun,Zeng Shuxiong,Pineda John P.,Lin Chunlin,Zhou Ning,Bai ChunxueORCID

Abstract

Abstract Background Epigenetic alterations are involved in most cancers, but its application in cancer diagnosis is still limited. More practical and intuitive methods to detect the aberrant expressions from clinical samples using highly sensitive biomarkers are needed. In this study, we developed a novel approach in identifying, visualizing, and quantifying the biallelic and multiallelic expressions of an imprinted gene panel associated with cancer status. We evaluated the normal and aberrant expressions measured using the imprinted gene panel to formulate diagnostic models which could accurately distinguish the imprinting differences of normal and benign cases from cancerous tissues for each of the ten cancer types. Results The Quantitative Chromogenic Imprinted Gene In Situ Hybridization (QCIGISH) method developed from a 1013-case study which provides a visual and quantitative analysis of non-coding RNA allelic expressions identified the guanine nucleotide-binding protein, alpha-stimulating complex locus (GNAS), growth factor receptor-bound protein (GRB10), and small nuclear ribonucleoprotein polypeptide N (SNRPN) out of five tested imprinted genes as efficient epigenetic biomarkers for the early-stage detection of ten cancer types. A binary algorithm developed for cancer diagnosis showed that elevated biallelic expression (BAE), multiallelic expression (MAE), and total expression (TE) measurements for the imprinted gene panel were associated with cell carcinogenesis, with the formulated diagnostic models achieving consistently high sensitivities (91–98%) and specificities (86–98%) across the different cancer types. Conclusions The QCIGISH method provides an innovative way to visually assess and quantitatively analyze individual cells for cancer potential extending from hyperplasia and dysplasia until carcinoma in situ and invasion, which effectively supplements standard clinical cytologic and histopathologic diagnosis for early cancer detection. In addition, the diagnostic models developed from the BAE, MAE, and TE measurements of the imprinted gene panel GNAS, GRB10, and SNRPN could provide important predictive information which are useful in early-stage cancer detection and personalized cancer management.

Funder

Clinical Research Fund from Zhongshan Hospital of Fudan University

National Natural Science Foundation of China

Research Funding from Jiangsu Commission of Health

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3