Identification of influential probe types in epigenetic predictions of human traits: implications for microarray design

Author:

Hillary Robert F.,McCartney Daniel L.,McRae Allan F.,Campbell Archie,Walker Rosie M.,Hayward Caroline,Horvath Steve,Porteous David J.,Evans Kathryn L.,Marioni Riccardo E.

Abstract

Abstract Background CpG methylation levels can help to explain inter-individual differences in phenotypic traits. Few studies have explored whether identifying probe subsets based on their biological and statistical properties can maximise predictions whilst minimising array content. Variance component analyses and penalised regression (epigenetic predictors) were used to test the influence of (i) the number of probes considered, (ii) mean probe variability and (iii) methylation QTL status on the variance captured in eighteen traits by blood DNA methylation. Training and test samples comprised ≤ 4450 and ≤ 2578 unrelated individuals from Generation Scotland, respectively. Results As the number of probes under consideration decreased, so too did the estimates from variance components and prediction analyses. Methylation QTL status and mean probe variability did not influence variance components. However, relative effect sizes were 15% larger for epigenetic predictors based on probes with known or reported methylation QTLs compared to probes without reported methylation QTLs. Relative effect sizes were 45% larger for predictors based on probes with mean Beta-values between 10 and 90% compared to those based on hypo- or hypermethylated probes (Beta-value ≤ 10% or ≥ 90%). Conclusions Arrays with fewer probes could reduce costs, leading to increased sample sizes for analyses. Our results show that reducing array content can restrict prediction metrics and careful attention must be given to the biological and distribution properties of CpG probes in array content selection.

Funder

Medical Research Council

National Institutes of Health

Alzheimer’s Research UK

Alzheimer’s Society

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3