Tazemetostat decreases β-catenin and CD13 protein expression in HEPG-2 and Hepatitis B virus-transfected HEPG-2 with decreased cell viability

Author:

Amin Mohamed N.,El-Far Yousra M.,El-Mowafy Mohammed,Elgaml Abdelaziz

Abstract

AbstractHepatocellular carcinoma (HCC) is one of the global health concerns. Hepatitis B virus (HBV) is one of the major causes of HCC. Poor clinical outcome of HCC patients is attributed to a small population of cancer cells known as cancer stem cells (CSCs). In this work, we studied the effect of inhibiting the enhancer of zeste homologue 2 (EZH2), a histone methyltransferase known to be overexpressed in CSCs, using tazemetostat (Taz). The effect of Taz was assessed in the HCC cell line (HEPG2) and Hepatitis B virus-transfected HEPG2 (HBV/HEPG2) cells. MTT assay showed a significant decrease in HEPG2 cells viability after 48 h treatment with either 0.5, 1, 4 or 6 μM Taz. HEPG2 and HBV/HEPG2 cells were incubated with either 0.5 or 1 μM Taz for 48 h, and then, the cells and supernatants were collected for protein expression analysis of EZH2, CD13, epithelial cell adhesion molecule (EpCAM) and β-catenin using enzyme-linked immunosorbent assay (ELISA). Taz showed a significant dose-dependent inhibition of EZH2, CD13 and β-catenin in HEPG2 and HBV/HEPG2 cells. Also, EpCAM protein levels were significantly decreased in HBV/HEPG2 but not in HEPG2 cell line alone. Our results indicate that Taz inhibition of EZH2 leads to downregulation of β-catenin signaling and eventually decreased expression of CD13 and EpCAM, which are characteristic for CSCs. The present study suggests that Taz could be a promising treatment for HCC including HBV-induced HCC that might be used in combination with radio/chemotherapy to target CSCs and prevent tumor relapse.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3