5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic and predictive biomarkers for coronary artery disease

Author:

Dong Chaoran,Chen Jiemei,Zheng Jilin,Liang Yiming,Yu Tao,Liu Yupeng,Gao Feng,Long Jie,Chen Hangyu,Zhu Qianhui,He Zilong,Hu Songnian,He Chuan,Lin Jian,Tang Yida,Zhu HaiboORCID

Abstract

Abstract Background The 5-hydroxymethylcytosine (5hmC) DNA modification is an epigenetic marker involved in a range of biological processes. Its function has been studied extensively in tumors, neurodegenerative diseases, and atherosclerosis. Studies have reported that 5hmC modification is closely related to the phenotype transformation of vascular smooth muscle cells and endothelial dysfunction. However, its role in coronary artery disease (CAD) has not been fully studied. Results To investigate whether 5hmC modification correlates with CAD pathogenesis and whether 5hmC can be used as a biomarker, we used a low-input whole-genome sequencing technology based on selective chemical capture (hmC-Seal) to firstly generate the 5hmC profiles in the circulating cell-free DNA(cfDNA) of CAD patients, including stable coronary artery disease (sCAD) patients and acute myocardial infarction (AMI) patients. We detected a significant difference of 5hmC enrichment in gene bodies from CAD patients compared with normal coronary artery (NCA) individuals. Our results showed that CAD patients can be well separated from NCA individuals by 5hmC markers. The prediction performance of the model established by differentially regulated 5hmc modified genes were superior to common clinical indicators for the diagnosis of CAD (AUC = 0.93) and sCAD (AUC = 0.93). Specially, we found that 5hmC markers in cfDNA showed prediction potential for AMI (AUC = 0.95), which was superior to that of cardiac troponin I, muscle/brain creatine kinase, and myoglobin. Conclusions Our results suggest that 5hmC markers derived from cfDNA can serve as effective epigenetic biomarkers for minimally noninvasive diagnosis and prediction of CAD.

Funder

Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences

Disciplines Construction Project

Fundamental Research Funds for the Central Universities

Drug Innovation Major Project

National Natural Science Foundation of China

Innovation Center for Genomics at Peking University and the Beijing Municipal Commission of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3