Author:
Topriceanu Constantin-Cristian,Dev Eesha,Ahmad Mahmood,Hughes Rebecca,Shiwani Hunain,Webber Matthew,Direk Kenan,Wong Andrew,Ugander Martin,Moon James C.,Hughes Alun D.,Maddock Jane,Schlegel Todd T.,Captur Gabriella
Abstract
Abstract
Background
DNA methylation (DNAm) age acceleration (AgeAccel) and cardiac age by 12-lead advanced electrocardiography (A-ECG) are promising biomarkers of biological and cardiac aging, respectively. We aimed to explore the relationships between DNAm age and A-ECG heart age and to understand the extent to which DNAm AgeAccel relates to cardiovascular (CV) risk factors in a British birth cohort from 1946.
Results
We studied four DNAm ages (AgeHannum, AgeHorvath, PhenoAge, and GrimAge) and their corresponding AgeAccel. Outcomes were the results from two publicly available ECG-based cardiac age scores: the Bayesian A-ECG-based heart age score of Lindow et al. 2022 and the deep neural network (DNN) ECG-based heart age score of Ribeiro et al. 2020. DNAm AgeAccel was also studied relative to results from two logistic regression-based A-ECG disease scores, one for left ventricular (LV) systolic dysfunction (LVSD), and one for LV electrical remodeling (LVER). Generalized linear models were used to explore the extent to which any associations between biological cardiometabolic risk factors (body mass index, hypertension, diabetes, high cholesterol, previous cardiovascular disease [CVD], and any CV risk factor) and the ECG-based outcomes are mediated by DNAm AgeAccel. We derived the total effects, average causal mediation effects (ACMEs), average direct effects (ADEs), and the proportion mediated [PM] with their 95% confidence intervals [CIs]. 498 participants (all 60–64 years) were included, with the youngest ECG heart age being 27 and the oldest 90. When exploring the associations between cardiometabolic risk factors and Bayesian A-ECG cardiac age, AgeAccelPheno appears to be a partial mediator, as ACME was 0.23 years [0.01, 0.52] p = 0.028 (i.e., PM≈18%) for diabetes, 0.34 [0.03, 0.74] p = 0.024 (i.e., PM≈15%) for high cholesterol, and 0.34 [0.03, 0.74] p = 0.024 (PM≈15%) for any CV risk factor. Similarly, AgeAccelGrim mediates ≈30% of the relationship between diabetes or high cholesterol and the DNN ECG-based heart age. When exploring the link between cardiometabolic risk factors and the A-ECG-based LVSD and LVER scores, it appears that AgeAccelPheno or AgeAccelGrim mediate 10–40% of these associations.
Conclusion
By the age of 60, participants with accelerated DNA methylation appear to have older, weaker, and more electrically impaired hearts. We show that the harmful effects of CV risk factors on cardiac age and health, appear to be partially mediated by DNAm AgeAccelPheno and AgeAccelGrim. This highlights the need to further investigate the potential cardioprotective effects of selective DNA methyltransferases modulators.
Funder
BHF
Barts Charity HeartOME1000
Economic and Social Research Council
Horizon 2020 Framework Programme
NIHR UCL Hospitals Biomedical Research Centre
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Developmental Biology,Genetics,Molecular Biology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献