Impact of intrauterine exposure to maternal diabetes on preterm birth: fetal DNA methylation alteration is an important mediator

Author:

Wang Guoying,Xu Richard,Zhang Boyang,Hong Xiumei,Bartell Tami R.,Pearson Colleen,Liang Liming,Wang Xiaobin

Abstract

Abstract Background In utero exposure to diabetes has been shown to contribute to preterm birth, though the underlying biological mechanisms are yet to be fully elucidated. Fetal epigenetic variations established in utero may be a possible pathway. This study aimed to investigate whether in utero exposure to diabetes was associated with a change in newborn DNA methylation, and whether the identified CpG sites mediate the association between diabetes and preterm birth in a racially diverse birth cohort population. Methods This study included 954 mother–newborn pairs. Methylation levels in the cord blood were determined using the Illumina Infinium MethylationEPIC BeadChip 850 K array platform. In utero exposure to diabetes was defined by the presence of maternal pregestational or gestational diabetes. Preterm birth was defined as gestational age at birth less than 37 weeks. Linear regression analysis was employed to identify differentially methylated CpG sites. Differentially methylated regions were identified using the DMRcate Package. Results 126 (13%) newborns were born to mothers with diabetes in pregnancy and 173 (18%) newborns were born preterm, while 41 newborns were born both preterm and to mothers with diabetes in pregnancy. Genomic-wide CpG analysis found that eighteen CpG sites in cord blood were differentially methylated by maternal diabetes status at an FDR threshold of 5%. These significant CpG sites were mapped to 12 known genes, one of which was annotated to gene Major Histocompatibility Complex, Class II, DM Beta (HLA-DMB). Consistently, one of the two identified significant methylated regions overlapped with HLA-DMB. The identified differentially methylated CpG sites mediated the association between diabetes in pregnancy and preterm birth by 61%. Conclusions In this US birth cohort, we found that maternal diabetes was associated with altered fetal DNA methylation patterns, which substantially explained the link between diabetes and preterm birth.

Funder

National Institutes of Health

Health Resources and Services Administration

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3