An in-depth evaluation of metagenomic classifiers for soil microbiomes

Author:

Edwin Niranjana Rose,Fitzpatrick Amy Heather,Brennan Fiona,Abram Florence,O’Sullivan Orla

Abstract

Abstract Background Recent endeavours in metagenomics, exemplified by projects such as the human microbiome project and TARA Oceans, have illuminated the complexities of microbial biomes. A robust bioinformatic pipeline and meticulous evaluation of their methodology have contributed to the success of these projects. The soil environment, however, with its unique challenges, requires a specialized methodological exploration to maximize microbial insights. A notable limitation in soil microbiome studies is the dearth of soil-specific reference databases available to classifiers that emulate the complexity of soil communities. There is also a lack of in-vitro mock communities derived from soil strains that can be assessed for taxonomic classification accuracy. Results In this study, we generated a custom in-silico mock community containing microbial genomes commonly observed in the soil microbiome. Using this mock community, we simulated shotgun sequencing data to evaluate the performance of three leading metagenomic classifiers: Kraken2 (supplemented with Bracken, using a custom database derived from GTDB-TK genomes along with its own default database), Kaiju, and MetaPhlAn, utilizing their respective default databases for a robust analysis. Our results highlight the importance of optimizing taxonomic classification parameters, database selection, as well as analysing trimmed reads and contigs. Our study showed that classifiers tailored to the specific taxa present in our samples led to fewer errors compared to broader databases including microbial eukaryotes, protozoa, or human genomes, highlighting the effectiveness of targeted taxonomic classification. Notably, an optimal classifier performance was achieved when applying a relative abundance threshold of 0.001% or 0.005%. The Kraken2 supplemented with bracken, with a custom database demonstrated superior precision, sensitivity, F1 score, and overall sequence classification. Using a custom database, this classifier classified 99% of in-silico reads and 58% of real-world soil shotgun reads, with the latter identifying previously overlooked phyla using a custom database. Conclusion This study underscores the potential advantages of in-silico methodological optimization in metagenomic analyses, especially when deciphering the complexities of soil microbiomes. We demonstrate that the choice of classifier and database significantly impacts microbial taxonomic profiling. Our findings suggest that employing Kraken2 with Bracken, coupled with a custom database of GTDB-TK genomes and fungal genomes at a relative abundance threshold of 0.001% provides optimal accuracy in soil shotgun metagenome analysis.

Funder

VistaMilk

Teagasc Walsh Scholarship Programme

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3