Beyond the snapshot: identification of the timeless, enduring indicator microbiome informing soil fertility and crop production in alkaline soils

Author:

Zhang Jianwei,Dolfing Jan,Liu Wenjing,Chen Ruirui,Zhang Jiabao,Lin Xiangui,Feng YouzhiORCID

Abstract

AbstractBackgroundMicroorganisms are known to be important drivers of biogeochemical cycling in soil and hence could act as a proxy informing on soil conditions in ecosystems. Identifying microbiomes indicative for soil fertility and crop production is important for the development of the next generation of sustainable agriculture. Earlier researches based on one-time sampling have revealed various indicator microbiomes for distinct agroecosystems and agricultural practices as well as their importance in supporting sustainable productivity. However, these microbiomes were based on a mere snapshot of a dynamic microbial community which is subject to significant changes over time. Currently true indicator microbiomes based on long-term, multi-annual monitoring are not available.ResultsHere, using samples from a continuous 20-year field study encompassing seven fertilization strategies, we identified the indicator microbiomes ecophysiologically informing on soil fertility and crop production in the main agricultural production base in China. Among a total of 29,184 phylotypes in 588 samples, we retrieved a streamlined consortium including 2% of phylotypes that were ubiquitously present in alkaline soils while contributing up to half of the whole community; many of them were associated with carbon and nutrient cycling. Furthermore, these phylotypes formed two opposite microbiomes. One indicator microbiome dominated byBacillus asahii, characterized by specific functional traits related to organic matter decomposition, was mainly observed in organic farming and closely associated with higher soil fertility and crop production. The counter microbiome, characterized by known nitrifiers (e.g.,Nitrosospira multiformis) as well as plant pathogens (e.g.,Bacillus anthracis) was observed in nutrient-deficit chemical fertilizations. Both microbiomes are expected to be valuable indictors in informing crop yield and soil fertility, regulated by agricultural management.ConclusionsOur findings based on this more than 2-decade long field study demonstrate the exciting potential of employing microorganisms and maximizing their functions in future agroecosystems. Our results report a “most-wanted” or “most-unwanted” list of microbial phylotypes that are ready candidates to guide the development of sustainable agriculture in alkaline soils.

Funder

National Natural Science Foundation of China

national key research and development program

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3