The seeds of Plantago lanceolata comprise a stable core microbiome along a plant richness gradient

Author:

de Souza Yuri Pinheiro AlvesORCID,Schloter MichaelORCID,Weisser WolfgangORCID,Huang YuanyuanORCID,Schulz StefanieORCID

Abstract

Abstract Background Seed endophytic bacteria are beneficial to plants. They improve seedling growth by enhancing plant nutrient uptake, modulating stress-related phytohormone production, and targeting pests and pathogens with antibiotics. Seed endophyte composition can be influenced by pollination, plant cultivar, and soil physicochemical conditions. However, the effects of plant community richness on seed endophytes are unknown. To investigate the effects of increasing plant species richness on the diversity and composition of the seed microbiome, we made use of a well-established long-term biodiversity experiment in Germany (The Jena Experiment). We sampled seeds from different Plantago lanceolata blossoms in a plant diversity gradient ranging from monoculture to 16 species mixtures. The seeds were surface sterilized to remove seed surface-associated bacteria and subjected to a metabarcoding approach to assess bacterial community structure. Results Our data indicate a very stable core microbiome, which accounted for more than 90% of the reads and was present in all seeds independent of the plant richness level the seeds originated from. It consisted mainly of reads linked to Pseudomonas rhizosphaerae, Sphingomonas faeni and Pirellulla spp. 9% of the obtained reads were not part of the core microbiome and were only present in plots of specific diversity levels. The number of unique ASVs was positively correlated with plant richness. Interestingly, most reads described as non-core members belonged to the same genera described as the core microbiome, indicating the presence of different strains or species with possibly different functional properties important for seed performance. Conclusion Our data indicate that Plantago lanceolata maintains a large seeds core microbiome across the plant richness gradient. However, the number of unique ASVs increases alongside the plant community richness, indicating that ecosystem biodiversity also mitigates diversity loss in seed endophytes.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3