Vegetation as a key driver of the distribution of microbial generalists that in turn shapes the overall microbial community structure in the low Arctic tundra

Author:

Wong Shu-Kuan,Cui Yingshun,Chun Seong-Jun,Kaneko Ryo,Masumoto Shota,Kitagawa Ryo,Mori Akira S.,Lim An Suk,Uchida Masaki

Abstract

AbstractUnderstanding the variability of microbial niches and their interaction with abiotic and biotic factors in the Arctic can provide valuable insights into microbial adaptations to extreme environments. This study investigates the structure and diversity of soil bacterial communities obtained from sites with varying vegetation coverage and soil biogeochemical properties in the low Arctic tundra and explores how bacteria interact under different environmental parameters. Our findings reveal differences in bacterial composition and abundance among three bacterial niche breadths (specialists, common taxa, and generalists). Co-occurrence network analysis revealed Rhizobiales and Ktedonobacterales as keystone taxa that connect and support other microbes in the habitat. Low-elevation indicators, such as vascular plants and moisture content, were correlated with two out of three generalist modular hubs and were linked to a large proportion of generalists’ distribution (18%). Structural equation modeling revealed that generalists’ distribution, which influenced the remaining microbial communities, was mainly regulated by vegetation coverage as well as other abiotic and biotic factors. These results suggest that elevation-dependent environmental factors directly influence microbial community structure and module formation through the regulation of generalists’ distribution. Furthermore, the distribution of generalists was mainly affected by macroenvironment filtering, whereas the distribution of specialists was mainly affected by microenvironment filtering (species-engineered microbial niche construction). In summary, our findings highlight the strong top–down control exerted by vegetation on generalists’ distribution, which in turn shapes the overall microbial community structure in the low Arctic tundra.

Funder

Ministry of Environment

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3